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Chapter 2 : HEC 15
Background

Go to Chapter 3

Considerable development and research have been done on rigid and flexible channel linings.
Prior to the late 1960's, natural materials were predominantly used to stabilize channels.
Typical materials included rock riprap, stone masonry, concrete, and vegetation. Since that
time a wide variety of manufactured and synthetic channel linings applicable to both permanent
and temporary channel stabilization have been introduced. Relatively little data on hydraulic
performances of these materials are available compared to the variety of materials produced.
Work is continuing on comparing hydraulic performances, material improvement, and new
material development.

Lining Types

Because of the large number of channel stabilization materials currently available, it is useful to
classify these materials based on their performance characteristics. Lining types are classified
as rigid, such as concrete, or flexible, such as vegetation or rock riprap. Flexible linings are
further classified as temporary or permanent. Lining materials are classified as follows:

1. Rigid Linings:

Cast-in-place concrete
Cast-in-place asphalt concrete
Stone masonry
Soil cement
Fabric form work systems for concrete
Grouted riprap

2. Flexible linings

Permanent

    Riprap
    Wire-enclosed riprap
    Vegetation lining
    Gravel

Temporary

     Bare soil
     Straw with net
     Curled wood mat
     Jute, paper, or synthetic net
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     Synthetic mat
     Fiberglass roving.

Performance Characteristics

Rigid Linings

Rigid linings (Figure 1) are useful in flow zones where high shear stress or
non-uniform flow conditions exist, such as at transitions in channel shape or at an
energy dissipation structure. In areas where loss of water or seepage from the
channel is undesirable, they provide an impermeable lining. Since rigid linings are
non-erodible the designer can use any channel shape that adequately conveys the
flow and provides adequate freeboard. This may be necessary if right-of-way
limitations restrict the channel size.

Figure 1. Rigid Concrete Channel Lining

Despite the non-erodible nature of rigid linings, they are highly susceptible to failure
from structural instability. For example, cast-in-place or masonry linings often break
up and deteriorate if foundation conditions are poor. Once a rigid linings
deteriorates, it is very susceptible to erosion because the large, flat, broken slabs
are easily moved by channel flow.

The major causes of structural instability and failure of rigid linings are freeze-thaw,
swelling, and excessive soil pore water pressures. Freeze thaw and swelling soils
exert upward forces against the lining and the cyclic nature of these conditions can
eventually cause failure. Excessive soil pore pressure occurs when the flow levels
in the channel drop quickly. Side slope instability can develop from excessively high
pore pressures and high hydraulic gradients along the slope surface.

Construction of rigid linings requires specialized equipment and costly materials. As
a result, the cost of rigid channel linings is high. Prefabricated linings can be a less
expensive alternative if shipping distances are not excessive.
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Flexible Linings

Riprap and vegetation are suitable linings for hydraulic conditions similar to those
requiring rigid linings. Because flexible linings are permeable, they may require
protection of underlying soil to prevent washout. For example, filter cloth is often
used with riprap to inhibit soil piping.

Vegetative and temporary linings are suited to hydraulic conditions where uniform
flow exist and shear stresses are moderate. Vegetative channel linings are not
suited to sustained flow conditions or long periods of submergence. Vegetative
channels with sustained low flow and intermittent high flows are often designed with
a composite lining of a riprap or concrete low flow section, (Figure 2).

Figure 2. Composite Channel Lining (riprap and jute net)

Temporary linings provide erosion protection until vegetation is established. In most
cases the lining will deteriorate over the period of one growing season, which
means that successful re-vegetation is essential to the overall channel stabilization
effort. Temporary channel linings may be used without vegetation to temporarily
control erosion on construction sites.

Information on Flexible Linings

The following is a summary of materials currently available for use as flexible channel linings.

Permanent Flexible Linings

Vegetation: Vegetative linings consist of planted or sodden grasses placed in and
along the drainage (Figure 3). If planted, grasses are seeded and fertilized
according to the requirements of that particular variety or mixture. Sod is laid
parallel to the flow direction and may be secured with pins or staples.

Rock Riprap: Rock riprap is dumped in place on a filter blanket or prepared slope
to form a well-graded mass with a minimum of voids (Figure 4). Rocks should be
hard, durable, preferably angular in shape, and free from overburden, shale, and
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organic material. Resistance to disintegration from channel erosion should be
determined from service records or from specified field and laboratory tests.

Figure 3. Vegetative Channel Lining (class D retardance)

Figure 4. Riprap Channel Lining

Wire-Enclosed Riprap: Wire-enclosed riprap is manufactured from a rectangular
container made of steel wire woven in a uniform pattern, and reinforced on corners
and edges with heavier wire (Figure 5). The containers are filled with stone,
connected together, and anchored to the channel side slope. Stones must be well
graded and durable. The forms of wire- enclosed riprap vary from thin mattresses to
box-like gabions. Wire-enclosed riprap is typically used when rock riprap is either
not available or not large enough to be stable.

Gravel Riprap: Gravel riprap consists of coarse gravel or crushed rock placed on
filter blankets prepared slope to form a well-graded mass with a minimum of voids
(Figure 6). The material is composed of tough, durable, gravel-sized particles and
should be free from organic matter.Arch
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Figure 5. Wire-Enclosed Riprap

Figure 6. Gravel Channel Lining

 

Temporary Flexible Linings

Woven Paper Net: Woven paper net consists of knitted plastic netting, interwoven
with paper strips (Figure 7 and Figure 8). The net is applied evenly on the channel
slopes with the fabric running parallel to the flow direction of the channel. The net is
secured with staples and by placement of fabric into cutoff trenches at intervals
along the channel. Placement of woven paper net is usually done immediately after
seeding operations.

Figure 7. Woven Paper Net Channel Lining
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Figure 8. Installed Woven Paper Net Lining

Jute Net: Jute net consists of jute yarn, approximately 60 mm in diameter, woven
into a net with openings that are about 10 by 20 mm. The jute net (Figure 9 and
Figure 10) is loosely laid in the channel parallel to the direction of flow. The net is
secured with staples and by placement of the fabric into cutoff trenches at intervals
along the channel. Placement of jute net is usually done immediately after seeding
operations.

Figure 9. Jute Net Lining

Figure 10. Installed Jute Net Channel Lining

Fiberglass Roving: Fiberglass roving consists of continuous fibers drawn from
molten glass, coated, and lightly bound together into roving. The roving is ejected
by compressed air forming a random mat of continuous glass fibers. The material is
spread uniformly over the channel and anchored with asphaltic materials (Figure 11
and Figure 12).
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Figure 11. Fiberglass Roving Lining

Figure 12. Installation of Fiberglass Roving Along a Roadside

Curled Wood Mat: Curled wood mat consists of curled wood with wood fibers, 80
percent of which are 150 mm or longer, with a consistent thickness and an even
distribution of fiber over the entire mat (Figure 13 and Figure 14). The top side of
the mat is covered with a biodegradable plastic mesh. The mat is placed in the
channel parallel to the direction of the flow and secured with staples and cutoff
trenches.

Figure 13. Curled Wood Mat
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Figure 14. Installed Curled Wood Mat Channel Lining

Synthetic Mat: Synthetic mat consists of heavy synthetic mono-filaments which are
fused at their intersections to form a blanket ranging in thickness from 6.0 to 20
mm. The mat, shown in Figure 15 and Figure 16, is laid parallel to the direction flow.
The mat is secured with staples or wooden stakes, and anchored into cutoff
trenches at intervals along the channel. After the mat is in place the area is seeded
through the openings in the mat and the cutoff trenches backfilled.

Figure 15. Synthetic Mat Lining

Figure 16. Installed Synthetic Mat Channel Lining

Straw with Net: Straw with net consists of plastic material forming a net of 20 mm
minimum square openings overlying straw mulch (Figure 17). Straw is spread
uniformly over the area at a rate of approximately 4.5 metric tons/hectare and may
be incorporated into the soil according to specifications. Plastic net is placed after
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mulching with straw to secure the mulch to the finished channel.

Figure 17. Straw With Net Channel Lining

Go to Chapter 3
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Chapter 3 : HEC 15
Design Concepts

Go to Chapter 4

The design method presented in this circular is based on the concept of maximum permissible tractive
force, coupled with the hydraulic resistance of the particular lining material. The method includes two
parts, computation of the flow conditions for a given design discharge and determination of the degree
of erosion protection required. The flow conditions are a function of the channel geometry, design
discharge, channel roughness, and channel slope. The erosion protection required can be determined
by computing the shear stress on the channel at the design discharge and comparing the calculated
shear stress to the permissible value for the type of channel lining used.

Open-Channel Flow Concepts

Type of Flow

Open-channel flow can be classified according to three general conditions:
uniform or non-uniform flow1.  

steady or unsteady flow2.  

subcritical or supercritical flow.3.  

In uniform flow, the depth and discharge remain constant along the channel. In steady flow,
no change in discharge occurs over time. Most natural flows are unsteady and are
described by runoff hydrographs. It can be assumed in most cases that the flow will vary
gradually and can be described as steady, uniform flow for short periods of time. Subcritical
flow is distinguished from super critical flow by a dimensionless number called the Froude
number (Fr), which is defined as the ratio of inertial forces to gravitational forces in the
system. Subcritical flow (Fr < 1.0) is characterized as tranquil and has deep, slower velocity
flow. Supercritical flow (Fr > 1.0) is characterized as rapid and has shallow, high velocity
flow.

For design purposes, uniform flow conditions are usually assumed with the energy slope
approximately equal to average bed slope. This allows the flow conditions to be defined by
a uniform flow equation such as Manning's equation. Supercritical flow creates surface
waves that are approaching the depth of flow. For very steep channel gradients, the flow
may splash and surge in a violent manner and special considerations for freeboard are
required.

 

Resistance to Flow

Depth of uniform flow in a channel depends on the roughness of a particular lining. For
practical purposes in highway drainage engineering, Manning's equation provides a reliable
estimate of uniform flow conditions. With a given depth of flow, d , the mean velocity may be

Arch
ive

d



computed as:

V = R2/3 Sf1/2 (1)

where:

V = average velocity in the cross section
n = Manning's roughness coefficient
R = hydraulic radius, equal to the cross-sectional area, A, divided by the wetted perimeter,
P
Sf = friction slope of the channel, approximated by the average bed slope for uniform flow

The discharge in the channel is given by the continuity equation as:

Q = AV                                                                                                                  
(2)

where:

A = flow area in the channel.

For most types of channel linings Manning's roughness coefficient, n, is approximately
constant. The roughness coefficient will increase for very shallow flows where the height of
the roughness features on the lining approaches the flow depth (see Appendix A). For a
riprap lining, the flow depth in small channels may be only a few times greater than the
diameter of the mean riprap size. In this case, use of a constant n value is acceptable, but
consideration of the shallow flow depth should be made by using a higher n value.

A channel lined with a good stand of vegetation cannot be described by a single n value.
The resistance to flow in vegetated channels is further complicated by the fact that
vegetation will bend in the flow, changing the height of the vegetation. The Soil
Conservation Service (SCS) (4) developed a classification of vegetation depending on the
degree of retardance. Grasses are classified into five broad categories, as shown in Table 1
in Chapter 4. Retardance Class A presents the highest resistance to flow and Class E
presents the lowest resistance to flow. In general, taller and stiffer grass species have a
higher resistance to flow, while short flexible grasses have a low-flow resistance.

Recent studies by Kouwen et al.(5,6), examined the biomechanics of vegetation and
provided a more general approach for determining the Manning's n value for vegetated
channels. The resulting resistance equation (see Appendix B, equation 19) uses the same
vegetative classification as the SCS but is more accurate for very stiff vegetation and mild
channel gradients. Design Chart 5, Chart 6, Chart 7, Chart 8, and Chart 9 were developed
from the Kouwen resistance equation.

 

Channel Bends

Flow around a bend in an open channel induces centrifugal forces because of the change in
flow direction.(7) This results in a superelevation of the water surface. The water surface is
higher at the outside of the bend than at the inside of the bend. This superelevation can be
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estimated by the equation:
equation 3

    

where:

V = mean velocity
T = surface width of the channel
g = gravitational acceleration
Rc = mean radius of the bend.

  

  
(3)

Flow around a channel bend imposes higher shear stress on the channel bottom and
banks. The nature of the shear stress induced by a bend is discussed in more detail in the
tractive force section. The increase stress requires additional design considerations within
and downstream of the bend.

 

Freeboard

The freeboard of a channel is the vertical distance from the water surface to the top of the
channel at design condition. The importance of this factor depends on the consequence of
overflow of the channel bank. At a minimum the freeboard should be sufficient to prevent
waves or fluctuations in water surface from overflowing the sides. In a permanent roadway
channel, about 0.15 m of freeboard should be adequate, and for temporary channels, no
freeboard is necessary. Steep gradient channels should have a freeboard height equal to
the flow depth. This allows for large variations to occur in flow depth for steep channels
caused by waves, splashing and surging. Lining materials should extend to the freeboard
elevation.

 

Stable Channel Design Concepts

 

Equilibrium Concepts

Stable channel design concepts focus on evaluating and defining a channel configuration
that will perform within acceptable limits of stability. Methods for evaluation and definition of
a stable configuration depend on whether the channel boundaries can be viewed as:

essentially rigid (static)1.  

movable (dynamic).2.  

In the first case, stability is achieved when the material forming the channel boundary
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effectively resists the erosive forces of the flow. Under such conditions the channel bed and
banks are in static equilibrium, remaining basically unchanged during all stages of flow.
Principles of rigid boundary hydraulics can be applied to evaluate this type of system.

In a dynamic system, some change in the channel bed and/or banks is to be expected if
erosive forces of the flow are sufficient to detach and transport the materials comprising the
channel boundary. Stability in a dynamic system is generally attained when the sediment
supply rate equals the sediment transport rate. This condition, where sediment supply
equals sediment transport, is often referred to as dynamic equilibrium. Although some
detachment and transport of bed and/or bank materials may occur, this does not preclude
attainment of a channel configuration that is basically stable. A dynamic system can be
considered stable so long as the net change does not exceed acceptable levels. For most
highway drainage channels, bank instability and possible lateral migration cannot be
tolerated. Consequently, development of static equilibrium conditions or utilization of linings
to achieve a stable condition is usually preferable to using dynamic equilibrium concepts.

Two methods have been developed and are commonly applied to determine if a channel is
stable in the sense that the boundaries are basically immobile (static equilibrium). These
methods are defined as the permissible velocity approach and the permissible tractive force
(shear stress) approach. Under the permissible velocity approach the channel is assumed
stable if the adopted mean velocity is lower than the maximum permissible velocity. The
tractive force (boundary shear stress) approach focuses on stresses developed at the
interface between flowing water and materials forming the channel boundary. By Chow's
definition, permissible tractive force is the maximum unit tractive force that will not cause
serious erosion of channel bed material from a level channel bed.(7)

Permissible velocity procedures were first developed around the 1920's. In the 1950's,
permissible tractive force procedures became recognized, based on research investigations
conducted by the U.S. Bureau of Reclamation. Procedures for design of vegetated channels
using the permissible velocity approach were developed by the SCS and have remained in
common use.

In spite of the empirical nature of permissible velocity approaches, the methodology has
been employed to design numerous stable channels in the United States and throughout
the world. However, considering actual physical processes occurring in open-channel flow,
a more realistic model of detachment and erosion processes is based on permissible
tractive force .

 

Tractive Force Theory

The hydrodynamic force of water flowing in a channel is known as the tractive force . The
basis for stable channel design with flexible lining materials is that flow-induced tractive
force should not exceed the permissible or critical shear stress of the lining materials. In a
uniform flow, the tractive force is equal to the effective component of the gravitational force
acting on the body of water, parallel to the channel bottom.(7) The average tractive force on
the channel, or shear stress is equal to:
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τ = γRS   

(Where:

γ=Unit Weight of Water
R= Hydraulic Radius
S= Average Bed Slope or Energy Slope

  

 (4)

The maximum shear stress, τd, for a straight channel occurs on the channel bed (7, 8) and
is less than or equal to the shear stress at maximum depth.

 

τd = γdS    

where:

d = maximum depth of flow.

  

  (5) 

Shear stress in channels is not uniformly distributed along the wetted perimeter. (9,10) A
typical distribution of shear stress in a trapezoidal channel tends toward zero at the corners
with a maximum on the center line of the bed, and the maximum for the side slopes
occurring about the lower third of the side as shown in Figure 18. Flow around a bend
creates secondary currents, which impose higher shear stresses the channel sides and
bottom compared to a straight reach (11) as shown in Figure 19 . At the beginning of the
bend, the maximum shear stress is near the inside and moves toward the outside as the
flow leaves the bend. The increased shear stress caused by a bend persists downstream of
the bend, a distance, LP. The maximum shear stress in a bend is a function of the ratio of
channel curvature to bottom width, RC /B.(12). As RC /B decreases, that is as the bend
becomes sharper, the maximum shear stress in the bend tends to increase ( see Chart 10 ).
The bend shear stress, τb, is expressed by a dimensionless factor, Kb, multiplied by the
shear stress in an equivalent straight section of channel where:

  

τb=Kb τd     (6)

The relationship between permissible shear stress and permissible velocity for a lining can
be found by substituting equation 4 into equation 1 giving:

Where:

τp = permissible shear stress.

  

  (7)
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Figure 18. Typical Distribution of Shear Stress

It can be seen from this equation that permissible velocity varies due to the hydraulic radius.
However, permissible velocity is not extremely sensitive to hydraulic radius since the
exponent is only 1/6. Equation 7 is useful in judging the field performance of a channel
lining, because depth and velocity may be easier to measure in the field than water surface
or channel gradient.

The tractive force method is a more compact approach than the permissible velocity
method, because the failure criteria for a particular lining is represented by a single critical
shear stress value. This critical shear stress value is applicable over a wide range of
channel slopes and channel shapes. Permissible velocities, on the other hand, are a
function of lining roughness, channel slope, and channel shape, and are only approximately
constant over a range of these parameters. An accurate solution of the permissible velocity
method therefore requires design nomographs The simpler representation of failure for the
tractive force method is a definite advantage for users who prefer to use programmable
calculators and microcomputers.

Figure 19. Shear Stress Distribution in a Channel Bend (after 11)
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Design Parameters

Design Discharge Frequency

Design flow rates for permanent roadside and median drainage channel linings usually have
a 5 or 10 year return period. A lower return period flow is allowable if a temporary lining is to
be used, typically the mean annual storm (approximately a 2-year return period, i.e., 50
percent probability of occurrence in a year). Temporary channel linings are often used
during the establishment of vegetation. The probability of damage during this relatively short
time is low, and if the lining is damaged, repairs are easily made. Design procedures for
determining the maximum permissible discharge in a roadway channel are given in Chapter
4.

Channel Cross Section Geometry

Most highway drainage channels are trapezoidal or triangular in shape with rounded
corners. For design purposes, a trapezoidal or triangular representation is sufficient. Design
of roadside channels should be integrated with the highway geometric and pavement
design to insure proper consideration of safety and pavement drainage needs. If available
channel linings are found to be inadequate for the selected channel geometry, it may be
feasible to widen the channel. This can be accomplished by either increasing the bottom
width or flattening the side slopes. Widening the channel will reduce the flow depth and
lower the shear stress on the channel perimeter.

It has been demonstrated that if a riprap-lined channel has 1V:3H or flatter side slopes,
there is no need to check the banks for erosion. (8) With steeper side slopes, a combination
of shear stress against the bank and the weight of the lining may cause erosion on the
banks before the channel bottom is disturbed. The design method in this manual includes
procedures for checking the adequacy of channels with steep side slopes.

Equations for determining cross-sectional area, wetted perimeter, and top width of channel
geometries commonly used for highway drainage channels are given in Appendix A.

Channel Slope

The channel bottom slope is generally dictated by the roadway profile and therefore is
usually fixed. If channel stability conditions warrant and available linings are not sufficient, it
may be feasible to reduce the channel gradient slightly relative to the roadway profile. For
channels outside the roadway right-of-way, The slope may be adjusted slightly.

Channel slope is one of the major parameters in determining shear stress. For a given
design discharge, the shear stress in the channel with a mild or subcritical slope is smaller
than a channel with supercritical slope. Roadside channels with gradients in excess of
about two percent will flow in a supercritical state. Most flexible lining materials are suitable
for protecting channel gradients of up to 10 percent. Riprap and wire-enclosed riprap are
more suitable for protecting very steep channels with gradients in excess of 10 percent.
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Chapter 4 : HEC 15
Design Procedure

Go to Chapter 5

 

Design Procedure

This section outlines the design procedure for flexible channel linings. Channels with steep gradients (slopes greater than 10%)
will usually produce a tractive force in excess of the permissible shear stress for most linings presented in this chapter at
relatively small discharges. Also, when riprap is used on steeper gradients, the design procedure must take into consideration the
additional forces acting on the riprap. Designs involving riprap should be checked and compared to results obtained from design
procedures presented in Chapter 5. Steep Gradient Design. The more conservative results, i.e., largest riprap size, should be
used for design. Other linings presented in this chapter are applicable over a wide range of channel gradients, provided the
permissible shear for the lining is not exceeded.

The basic design procedure is supplemented for riprap lined channels with side slopes steeper than 1V:3H. Use of side slopes
steeper than 1V:3H is not encouraged for flexible linings other than riprap or gabions because of the potential for erosion of the
side slopes. If a combination of linings is used, the composite channel lining procedure outlined in Chapter 6 should be used. In
cases where flexible linings discussed in this circular do not provide adequate protection, other alternatives, including rigid linings
should be considered. Because of the substantial increased cost of rigid linings, and their vulnerability to failure, other
alternatives such as use of additional inlets, a modified channel geometry or a flatter channel gradient are preferred.

 

Flexible Lining Design

The basic design procedure for flexible channel linings is quite simple. It involves only two computations and several
straight forward comparisons of lining performance. The computations include a determination of the uniform flow
depth in the channel, known as the normal depth, and determination of the shear stress at maximum flow depth.
Designers familiar with methods for determining normal depth may use any convenient method and the Manning's
roughness coefficients provided in this manual. A nomograph is also provided in this chapter for determining the
normal depth in trapezoidal channels. The computation for shear stress is much simpler and can be carried out
without the need of any design aids.

The basic comparison required in the design procedure is that of permissible to computed shear stress for a lining. A
table and two figures are provided that give permissible shear stress values for a variety of lining types. If the
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permissible shear stress is greater than the computed shear, the lining is considered acceptable. If a lining is
unacceptable, a lining with a higher permissible shear stress is selected and the calculations for normal depth and
shear stress is repeated. A worksheet is provided at the end of this chapter (Figure 23) for carrying out the design
procedures presented in this chapter.

Channels lined with gravel or riprap on side slopes steeper than 1V:3H must be designed using the steep side slope
design procedure. Steep side slopes are allowable within a channel if cohesive soil conditions exist. Channels with
steep slopes should not be allowed if the channel is constructed in non-cohesive soils.

 

Permissible Shear Stress

The permissible shear stress, τp, indicates the force required to initiate movement of the lining material. Prior to
movement of the lining, the underlying soil is relatively protected. Therefore permissible shear stress is not
significantly affected by the erodibility of the underlying soil. However, if the lining is eroded and moved, the bed
material is exposed to the erosive force of the flow. The consequence of lining failure on highly erodible soils is great,
since the erosion rate after failure is high compared to soils of low erodibility.

Values for permissible shear stress for linings are based on research conducted at laboratory facilities and in the
field. The values presented here are judged to be conservative and appropriate for design use. Table 2 presents
permissible shear stress values for manufactured, vegetative, and riprap lining types. The permissible shear stress for
non-cohesive soils is a function of mean diameter of the channel material as shown in Chart 1. For larger stone sizes
not shown in Chart 1 and rock riprap, the permissible shear tress is given by the following equation:

p =628.3 D50 

where:

D50  is the mean riprap size in meters

 (8)

For cohesive materials the variation in permissible shear stress is governed by many soil properties. The plasticity
index of the cohesive soil provides a good guide to the permissible shear stress as shown in Chart 2.
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Determination of Normal Flow Depth

The condition of uniform flow in a channel at a known discharge is computed using the Manning's equation combined
with the continuity equation:

Where:

Q = discharge
n = Manning's roughness coefficient
A = cross-sectional area
R = hydraulic radius
Sf = friction gradient which, for uniform flow conditions, equals the
channel bed gradient, S.

  

 (9)

Chart 3 provides a solution to Manning's equation for trapezoidal channels. The geometric properties of a trapezoidal
channel can be found using Chart 4 or the equations provided in Appendix A.

 

Manning's Roughness Coefficients for Non-Vegetative Linings

Table 3 gives recommended values of the Manning's roughness coefficient for flexible channel lining materials,
including riprap-type lining materials. The n values will vary with flow depth. The channel roughness will be higher for
shallow flow depths and lower for large flow depths. The range of flow depths from 150 mm to 600 mm is typical of
highway drainage channels should be used in most cases.

 

Manning's Roughness Coefficients for Vegetative Linings

Manning's roughness coefficient for vegetative linings varies significantly depending on the amount of submergence
of the vegetation and the flow force exerted on the channel bed. As a result, the Manning's n value must be
determined by trial and error taking into consideration both the depth of flow and the flow force. Chart 5, Chart 6,
Chart 7, Chart 8, and Chart 9 show the variation in Manning's n for five classes of vegetation. These charts can be
used to determine Manning's n for a wide range of flow conditions.
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Determination of Shear Stress on Channel

As presented in Chapter 3, Tractive Force Theory, the shear stress on the channel lining at maximum depth, τd, is
computed using the following equation:

Equation 5 from Chapter 3

τd = γds

where:

γ = unit weight of water (9810 N/m3 )
d = flow depth m
S = channel gradient, m/m

Flow around a channel bend imposes higher shear stress on the channel bottom and banks. For bends, the
maximum shear stress is given by the following equation:

Equation 6 from Chapter 3

τb =Kb τd  

where:

the value of Kb can be found using Chart 10.

In Chart 10, the radius of curvature of the channel center line, RC, and the bottom width of the channel, B. determine
the magnitude of factor Kb. The length of protection, Lp, required downstream of a bend is found using Chart 11. The
length of protection is a function of the roughness of the lining material in the bend (nb) and the depth of flow.

 

Side Slope Stability

Channels lined with gravel or riprap on side slopes steeper than 1V:3H may become unstable. As the angle of the
side slopes approaches the angle of repose of the channel lining, the lining material becomes less stable. However,
the shear stress on the channel side is less than the maximum shear stress occurring on the channel bed. The
stability of a side slope is a function of the channel side slope and the angle of repose of the rock lining material.

When the tractive force ratio is compared to the ratio of the shear stress on the sides to the shear stress on the
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bottom of the channel, the rock size for the channel side slope can be determined. The angle of repose, θ. for
different rock shapes and sizes is provided in Chart 12. The ratio of shear stress on the sides and bottom of a
trapezoidal channel, K1, is given in Chart 13 and the tractive force ratio, K2, is given in Chart 14. The required rock
size (mean diameter of the gradation D50) for the side slopes is found using the following equation:

equation 10           

                                                                        (10)

 

Maximum Discharge Approach

In many cases, the designer simply needs to know the maximum discharge a channel can convey given the
permissible shear stress and the corresponding allowable depth. By knowing the maximum discharge that a lining
can sustain, the designer can determine the maximum length of lining for a channel, based on the hydrology of the
site. This information can assist the designer in an economic evaluation of lining types and can determine inlet
spacing.

The procedure presented is for both vegetative linings and non-vegetative linings. Applying the procedure for
vegetative linings is particularly useful, since it does not involve a trial and error solution.

 

Design Considerations for Riprap Lining

Two additional design considerations are required for riprap channel linings:
Riprap gradation and thickness1.  

Use of filter material under rock riprap.2.  

 

Riprap Gradation and Thickness

Riprap gradation should follow a smooth size distribution curve. Most riprap gradations will fall in the
range of D100 /D50 and D50 /D20 between 3.0 to 1.5, which is acceptable. The most important criterion is a
proper distribution of sizes in the gradation so that interstices formed by larger stones are filled with
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smaller sizes in an interlocking fashion, preventing the formation of open pockets. These gradation
requirements apply regardless of the type of filter design used.

In general, riprap constructed with angular stones has the best performance. Round stones are
acceptable as riprap provided they are not placed on side slopes steeper than 1V:3H. Flat slab-like stones
should be avoided since they are easily dislodged by the flow. An approximate guide to stone shape is
that neither the breadth nor thickness of a single stone is less than one-third its length.

The thickness of a riprap lining should equal the diameter of the largest rock size in the gradation. For
most gradations, this will mean a thickness from 1.5 to 3.0 times the mean riprap diameter.

 

Filter Design

When rock riprap is used, the need for an underlying filter material must be evaluated. The filter material
may be either a granular filter blanket or a engineering fabric.

For a granular filter blanket , the following criteria must be met:

                                                                

(11)

                                                   

                                                                    

 (12)

                                                                             

In the above relationships, "filter" refers to the overlying material and "base" refers to the underlying
material. The relationships must hold between the filter blanket and base material and between the riprap
and filter blanket .
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The thickness of the granular filter blanket should approximate the maximum size in the filter gradation.
The minimum thickness for a filter blanket should not be less than 150 mm.

In selecting an engineering filter fabric, the fabric should be able to transmit water from the soil and also
have a pore structure that will hold back soil. The following properties of an engineering filter fabric are
required to assure that their performance is adequate as a filter under riprap. (18)

The fabric must be able to transmit water faster than the soil.1.  

The following criteria for the apparent opening size (AOS) must be met:2.  

For soil with less than 50 percent of the particles by weight passing a U.S. No. 200
sieve, AOS < 0.6 mm (greater than #30 U.S. Std. Sieve).

.  

For soil with more than 50 percent of the particles by weight passing a U.S. No. 200
sieve, AOS < 0.297 mm (greater that #50 U.S. Std. Sieve).

b.  

The above criteria only applies to non-severe or non-critical installations. Severe or critical installations
should be designed based on permeability tests.

 

Design Procedure

The design procedure is summarized below. The procedure for flexible linings is a basic stepwise solution approach.

 

Flexible Lining Design Procedure

(see computation sheet, Figure 23)

 Step 1 . Select a flexible lining and determine the permissible shear stress, τp (see Table 2)

 Step 2. Estimate flow depth for vegetation or flow depth range for linings, the channel shape, slope and design
discharge(s) .

 Step 3 . Determine Manning's n value for estimated flow depth.
For non-vegetative linings, use Table 3.  

For vegetation:  b.  
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Calculate the hydraulic radius, R. (Use Chart 4 for trapezoidal channels and Appendix A for other
shapes.)

1.  

Determine n from Chart 5, Chart 6, Chart 7, Chart 8, or Chart 9.2.  

 Step 4. Calculate the flow depth, d, in the channel. (Chart 3 for trapezoidal channels.)

 Step 5 . Compare computed flow depth, d, with estimated flow depth, di. If d is outside the assumed range for
non-vegetative linings or differs by more than 0.030 m from di for vegetation, repeat steps 2 through 4.

 Step 6. Calculate the shear stress, τd. If τd > τp, the lining is not acceptable, repeat steps 1 through 5.

τd = γdS .

 Step 7. For channel bends:
Determine the factor for maximum shear stress on channel bends, Kb, from Chart 10. This is a function of the
ratio of channel curvature to bottom width, Rc/B.

.  

Calculate the shear stress in the bend, τb.b.  

τb =Kbτd

If τb > τp, the lining is not acceptable, repeat steps 1 through 7.

 (6)

                                                                                                                                          (3)

Calculate length of protection, Lp, downstream of the bend from Chart 11.c.  

Calculate superelevation.   4.  

Step 8. For riprap or gravel linings on steep side slopes (steeper than 1V:3H):
Determine the angle of repose for the rock size and shape from Chart 12..  

Determine K1, the ratio of maximum side shear to maximum bottom shear for a trapezoidal channel from Chart
13.

b.  

Determine K1, the tractive force ratio from Chart 14. c.  

Calculate the required D50 for the side slopes.4.  
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                                                                                                             (10)

Step 9. For riprap on slopes greater than 10% check design procedure in Chapter 5. Use whichever procedure
results in the larger riprap size.

 

Maximum Discharge Design Procedure

Step 1. Determine the allowable depth of flow in the channel using the permissible shear stress (Table 2 or Chart 1 or Chart
2). Check that this depth does not exceed the depth (including freeboard) provided in the typical roadway section.

(13)

 

 Step 2. Determine the area and hydraulic radius corresponding to the allowable depth using Chart 4.

Step 3. For non-vegetative linings, find the correct Manning's n from Table 3.
For vegetative linings, enter into Chart 5, Chart 6, Chart 7, Chart 8, and Chart 9 for the correct vegetation class and determine
the Manning's n value.

Step 4. Solve Manning's equation(equation 9) to determine the maximum discharge for the channel.

 

Example Problems
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Example #1

Determine whether it is feasible to use jute net as a temporary lining.

Given: Q = 0.566 m3/s
          S = 0.005 m/m
          Trapezoidal channel with a bottom width of 1.22 m and 1V:3H side slopes.

Find: Depth of flow in the channel and the adequacy of the jute net lining

Solution:

1. From Table 2, the permissible shear stress is 21.5 N/m2 and from Table 3, the Manning's n value is 0.022
(assuming a flow depth between 0.15 to 0.60 m).

2. Entering Chart 3 for S=0.005
                                         Qn=0.012
                                         B=1.22
                                         d/B=0.22
                                         d=0.268 m  

       The flow depth has remained within the range of 0.15 to 0.60 m so that the assumed Manning's n value is
correct.

 3. Using equation 5, the shear stress on the channel bed at maximum depth is,
τd = γds = 9810 x 0.268 x 0.005 = 13.1 N/m2

 4. Comparing the shear stress, 13.1 N/m2, to the permissible shear stress, 21.5 N/m2 shows that jute net is an
acceptable channel lining.

 

Example #2

Determine if a single application of fiberglass roving lining is an adequate lining for a median ditch.

Given: B = 0.61 m
            Z = 4
            S = 0.05 m/m
            Q = 0.283 m3/s
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Find: Depth of flow .

Solution:

1. From Table 3, Manning's n is 0.021 assuming a flow depth in the range of 0.15 to 0.60 m

2. Entering Chart 3 for S = 0.05, given
                                         Qn = 0.0059 m3/s
                                         B = 0.61
                                         d/B = 0.21
                                         d = 0.128 m  

Checking the flow depth against the initial assumed range shows that the computed depth is below that range. The
Manning's n for flow depth range of 0.0 to 0.15 m is 0.028.

       Enter Chart 3 for S=0.05
                                   Qn = 0.007 m3/s
                                   B = 0.61
                                   d/B = 0.24
                                   d = 0.146 m  

       The computed flow depth is within the assumed range.

 3.The maximum shear stress from equation 5 is,

τd = γds = 9810 x 0.146 x 0.05
     = 71.6 N/m2

 4. The permissible shear stress for fiberglass is 28.7 N/m2. Since this is less than the maximum shear stress, the
lining is not adequate.

 

Example #3

A roadside ditch is lined with a good stand of uncut buffalo grass. Determine the flow depth and Manning's n for the
depth at design discharge.

Given:  Q = 0.566m3/s
             S = 0.005 m/m
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             B = 1.22 m
              z = 4

Find:

 1. Manning's n value.

 2. Flow depth in the channel.

Solution:

The vegetative retardance classification is found in Table 1. A good stand of uncut buffalo grass is classified as
retardance D. The determination of Manning's n and flow depth for a vegetative lining may require several trials.

 

Trial 1

 1. Initial depth is estimated at 0.3 m

 2. From Chart 4 for Z = 4 and d/B = 0.25 m
                                    R/d = 0.65
                                    R = 0.195 m

 3. Entering Chart 8 given R = 0.2 m and S = 0.005 m

n = 0.088

 4. Entering Chart 3 given S = 0.005, Qn = 0.0498 m3/s, B = 1.22 m, and Z = 4 m

                             d/B = 0.40
                             d = 0.488 m

 5. Since the difference between the initial and calculated depth is greater than 0.03 m, the procedure
is repeated.

 

Trial 2
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 1.Use the calculated depth of 0.488 m from trial 1.

 2. From Chart 4 for Z = 4 and d/B = 0.40
                                    R/d = 0.61
                                       R = 0.298 m

 3. Entering Chart 8 given R = 0.298 m and S = 0.005 m,

n = 0.066

 4. Entering Chart 3 given  S = 0.005
                                                 Qn = 0.0374
                                                   B =1.22 m  

                                               d/B = 0.36
                                                   d = 0.439 m

 5. Since the difference between the initial and calculated depths is 0.049 m which is greater than 0.03
m the procedure is repeated.

 

Trial 3

 1. Use the calculated depth of 0.439 m from trial 2.

 2. From Chart 4 for Z = 4 and d/B = 0.36
                                    R/d = 0.61
                                       R = 0.268 m

 3. Entering Chart 8 given R = 0.268 m and S = 0.005 m,

n = 0.070

 4. Entering Chart 3 given S = 0.004, Qn =0.0396 m3/s, and B =1.22,  

                                            d/B = 0.37
                                                d = 0.45 m
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 5. The initial depth and the calculated depth are in agreement. The procedure is completed with the
following results:

n=0.070
d=0.45 m

 

Example #4

Determine a temporary channel lining for a trapezoidal channel.

Given:  Q = 0.45 m3/s
             S = 0.03 m/m
             B = 1.22 m
             Z = 3

Find: Adequate temporary channel lining.

Solution:

 

Trial 1

Jute net is selected as an initial channel lining alternative. The permissible shear stress (Table 2) and
Manning's n value (Table 3) are,

τp = 21.5 N/m2

n = 0.022 (assuming a depth range of 0.15 to 0.60 m

 2. The flow depth is determined from Chart 3. Given S=0.03, Qn = 0.010, and B = 1.22 m
d/B = 0.12
d = 0.146 m

The flow depth is slightly below the specified range for Manning's n.

 3. The shear stress at maximum depth is found using equation 5,
τd = 9810 x 0.146 x 0.03 = 43.0 N/m2
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 4. The computed shear stress of 43.0 N/m2 is greater than the permissible shear stress of 21.5 N/m2

so jute net would not be an acceptable lining.

 

Trial 2

1. The next lining chosen is curled wood mat because the permissible shear stress for this lining
exceeds the calculated shear stress from the first trial. Fiberglass roving was not chosen since its
permissible shear stress was less than the calculated shear stress from the first trial. The permissible
shear from Table 2 and the Manning's n from Table 3 for curled wood mat are,

τp = 74.2 N/m2

n = 0.035 (assuming a depth range of 0.15 to 0.60 m)

 2. The flow depth is determined from Chart 3. given S=0.030, Qn = 0.0158, B = 1.22 m, and Z=3,
d/B = 0.15
d = 0.183 m

     The flow depth is within the specified range for Manning's n value used.

 3. The shear stress at maximum depth is found using equation 5,
τd = 9810 x 0.183 x 0.03 = 53.8 N/m2

 4. The computed shear stress of 53.8 N/m2 is less than the permissible shear stress of 74.2 N/m2 so
curled wood mat is an acceptable lining.

     Use of worksheets for this problem is illustrated in Figure 21.

 

Example #5

Determine an acceptable channel lining for the roadside channel in example 4 if a bend is included in the channel
alignment.

Given: 45o channel bend
           RC = 6.1 m
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Find:

 1. The channel lining required for the bend and the location of the lining.

 2. The superelevation of the water surface in the bend.

Solution :

 

Trial 1

 1. From the results of example 4, the shear stress of the straight reach upstream of the bend is,
τd = 53.8 N/m2

        A curled wood mat lining was used to stabilize the channel.

2. The shear stress in the bend is given by equation 6. The value of Kb in equation 6 is found from
Chart 10 given RC/B = 5,

Kb = 1.6

     The bend shear stress is,
τb = 1.6 x 53.8 = 86.1 N/m2

 3. The computed shear stress in the bend is greater than the permissible shear stress for a curled
wood mat channel lining (74.2 N/m2). A new lining is required for the channel bend.

 

Trial 2

1. Synthetic mat is chosen as a bend lining material, because its permissible shear stress from Table 2
(95.8 N/m2) is greater than the computed shear stress from trial 1. The Manning's n value is 0.025 for a
flow depth range from 0.15 to 0.60 m.  

2. Entering Chart 3 given S = 0.03, Qn = 0.011, and B = 1.22 m   
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d/B = 0.13
d = 0.159 m

     This depth falls within the range originally assumed for Manning's n.

 3. The shear stress from equation 5,
τd = 9810 x 0.159 x 0.03 = 46.8 N/m2

     The bend shear stress from equation 6 is,
τb = 1.6 x 46.8 = 74.9 N/m2

 4. The calculated bend shear stress is less than the permissible shear stress for synthetic mat of 95.8
N/m2. Synthetic mat therefore provides an acceptable channel bend lining.

5. The synthetic mat will extend through the bend and a distance downstream. The downstream
distance is found using Chart 11, given nb = 0.025, R = 0.12 m (from Chart 4 for d/B = 0.13 and Z = 3),

Lp /R = 15.9
     Lp = 1.91 m

The total length of synthetic mat lining is the sum of the length in the bend plus the length required for
downstream protection. The following figure shows the required location of lining materials.

Figure 20. Location Sketch of Flexible Linings for Example 5
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 6. The superelevation of the water surface is computed from equation 3. To execute equation 3, top
width and cross-sectional area must be computed, where,

T = B + 2Zd = 1.22 + 2 x 3 x 0.158 = 2.16 m

and
A = Bd + Zd2 = 1.22 x 0.158 + 3 x 0.1582 = 0.268 m2

The velocity in the channel found using the continuity equation
(equation 2),

V = Q/A = 0.45/0.268 = 1.68 m/s

Solving equation 3 given V = 1.68 m/s, T = 2.16 m, and Rc=6.1m

 

The freeboard in the channel bend should be at least 0.10 meters to accommodate the super elevation of
the water surface.

Use of the worksheets for this problem is illustrated in Figure 21.

 

Example #6

Because of a width constraint on available right-of-way, the side slopes of a roadside ditch must be steepened to
1V:2H. The 51-mm gravel lining has been determined to be adequate to protect the ditch bed. Determine the gravel
size, D50, necessary to protect the ditch banks.

Given: Very rounded gravel
             A trapezoidal channel.

             Z = 2
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             B = 1.07 m

             Flow depth, d = 0.213 m

Find: D50 for side slopes.

Solution:

1. From Chart 12 given a D50= 0.051 m the angle of repose θ = 36o

2. From Chart 13 given B/d = 5.0 the ratio of side shear to bottom shear, K1= 0.79

3. From Chart 14 given Z=2 and θ=36o, the tractive force ratio, K2=0.65

4. The required side slope D50 from equation 10 is,

 

Example #7

Determine the maximum allowable discharge for a median ditch lined with a good stand of Kentucky bluegrass
(approximately 200 mm in height). The ditch has a depth of 0.914 meters from the roadway shoulder.

Given: S=0.010 m/m
            B=1.22 m
            Z=4

Find: Maximum allowable discharge.

Solution:

1. From Table 1, a good stand of Kentucky bluegrass is classified as retardance C. From Table 2 the permissible
shear stress,

τp = 47.9 N/m2

Determine the allowable depth from equation 5, given τd =τp .
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d = τp/γS =       47.9      = 0.488 m
                    9810 x 0.01

Note: The allowable depth is less than the depth of the ditch.

2. Determine the flow area and hydraulic radius from Chart 4, given d/B = 0.40,
A/Bd = 2.6
A = 1.55 m2

R/d = 0.61
R = 0.3 m

 3. From Chart 7: n=0.072.

 4. Solving the Manning's equation with continuity equation (equation 9),
Q= 1 AR2/3 S1/2 =    1    x 1.55 x 0.32/3 x 0.011/2 = 0.96 m3/s
       n                       0.072
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Figure 21. Worksheet for Example Problems 4 and 5

 

Example #8

Determine the need for a granular filter blanket.

Given: Riprap Gradation
D85 =0.40 m
D50 =0.20 m
D15 =0.10 m

Base Soil Gradation

D85 =1.5 mm=0.0049 ft
D50 = 0.5 mm=0.0016 ft
D15 =0.167mm=0.00055 ft
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Find: Granular Filter Blanket Requirement.

Solution:

Since the relationship between riprap and base do not meet the recommended dimensional criteria, a filter blanket is
required. First, determine the required dimensions of the filter with respect to the base material.
D50 filter < 40, so D50 filter < 40 x 0.5 mm = 20 mm
D50 base
D15 filter < 40, so D15 filter < 40 x 0.167 mm = 6.7 mm
D15 base
D15 filter < 5, so D15 filter < 5 x 1.5 mm = 7.3 mm
D85 base
D15 filter > 5, so D15 filter > 5 x 0.167 mm = 0.84 mm
D15 base

Therefore, with respect to the base material, the filter must satisfy:
D50 filter < 20 m

0.84 m <D15 filter < 6.7 mm

Second, determine the required filter dimensions with respect to the riprap,
D 50 riprap< 40, So , D50 filter >0.20= 5.0 mD50 filter 40
D 15 riprap< 40, So , D15 filter >0.10= 2.5 mmD15 filter 40
D 15 riprap 0.10
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< 5, So , D85 filter > = 20 mmD85 filter 5
D 15 riprap> 5, So , D15 filter > 0.10= 20 mmD15 filter 5
With respect to the riprap:

                 D50 filter > 5.0 mm
2.5 mm < D15 filter < 20.0 mm
                 D85 filter > 20.0 mm

Combining:

2.5 mm < D15 filter < 6.7 mm
5.0 mm < D50 filter < 20.0 mm
                 D85 filter > 20.0 mm

The gradation requirements for the resulting granular filter blanket specifications are illustrated in Figure 22.

Figure 22. Gradations of Granular Filter Blanket for Example 8
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Figure 23. Worksheet for Flexible Lining

Click on a hyperlinks below to view the following tables:

Table 1. Classification of Vegetal Covers as to Degree of Retardance
Table 2. Permissible Shear Stresses for Lining Material
Table 3. Manning's Roughness Coefficients
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Chart 1. Permissible Shear Stress for Non-Cohesive Soils (after 15)

Chart 2. Permissible Shear Stress for Cohesive Soils (after 16)
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Chart 3. Solution of Manning's Equation for Channels of Various Side Slopes (after 17)

Chart 4. Geometric Design Chart for Trapezoidal ChannelsArch
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Chart 5. Manning's n versus Hydraulic Radius, R, for Class A Vegetation (after 5)
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Chart 6. Manning's n versus Hydraulic Radius, R, for Class B Vegetation (after 5)
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Chart 7. Manning's n versus Hydraulic Radius, R, for Class C Vegetation (after 5)
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Chart 8. Manning's n versus Hydraulic Radius, R, for Class D Vegetation (after 5)
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Chart 9. Manning's n versus Hydraulic Radius, R, for Class E Vegetation (after 5)
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Chart 10. Kb Factor for Maximum Shear Stress on Channel Bends (12)Arch
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Chart 11. Protection Length, Lp, Downstream of Channel BendArch
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Chart 12. Angle of Repose Riprap in Terms of Mean Size and Shape of Stone
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Chart 13. Channel Side Shear Stress to Bottom Shear Stress Ratio, K1 (8)
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Chart 14. Tractive Force Ratio, K2 (8)

 Go to Chapter 5 Arch
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Chapter 5 : HEC 15
Steep Gradient Channel Design

Go to Chapter 6

 

Steep Gradient Channel Design

Achieving channel stability on steep gradients usually requires some type of channel lining except where the channels can be
constructed in durable bedrock. This section outlines the design of two types of flexible channel linings for steep gradients, riprap,
and gabion mattress. Because of the additional forces acting on riprap, results obtained using the previous design procedure
should be compared to the steep gradient procedures when channel gradients approach 10 percent.

Rigid channel linings may be a more cost-effective alternative in the case of steep slope conditions. The size of riprap and gabion
linings increases quickly as discharge and channel gradient increase. The decision to select a rigid or flexible lining may be
based on other site conditions, such as foundation and maintenance requirements for the steep slope channel lining.

 

Steep Slope Design

Riprap stability on a steep slope depends on forces acting on an individual stone making up the riprap. The primary forces
include the average weight of the stones and the lift and drag forces induced by the flow on the stones. On a steep slope, the
weight of a stone has a significant component in the direction of flow (see figures in Appendix C). Because of this force, a stone
within the riprap will tend to move in the flow direction more easily than the same size stone on a mild gradient. Hence, for a
given discharge, steep slope channels require larger stones to compensate for larger forces in the flow direction and higher shear
stress. The riprap design procedure is based on the factor of safety method for riprap design, using a safety factor of 1.5. A
description of the factor of safety method and the assumptions made in developing the design charts is presented in Appendix C.

Gabion mattress stability on a steep slope is similar to that of riprap but because the stones are bound by wire mesh, they tend to
act as a single unit. Movement of stones within a gabion is negligible. This permits use of smaller stone sizes compared to those
required for loose riprap. Of course the stability of gabions depends on the integrity of the wire mesh. In streams with high
sediment concentrations or with rocks moving along the bed of the channel, the wire mesh may be abraded and eventually fail.
Under these conditions the gabion will no longer behave as a single unit but rather as individual stones. Applications of gabion
mattresses and baskets under these conditions should be avoided. A worksheet is provided at the end of this chapter (Figure 25)
for carrying out design procedures in this chapter.
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Other Considerations for Steep Slope Design

Channel Alignment and Freeboard

Bends should be avoided on steep gradient channels. A design requiring a bend in a steep channel
should be reevaluated to eliminate the bend or designed using a culvert.

Extent of riprap or gabions on a steep gradient must be sufficient to protect transition regions of the
channel both above and below the steep gradient section. The transition from a steep gradient to a culvert
should allow for slight movement of riprap or slumping of a gabion mattress.

Riprap or gabions should be placed flush with the invert of a culvert. The break between the steep slope
and culvert entrance should equal three to five times the mean rock diameter (or mattress thickness if
gabions are used). The transition from a steep gradient channel to a mild gradient channel may require an
energy dissipation structure such as a plunge pool. The transition from a mild gradient to a steep gradient
should be protected against local scour upstream of the transition for a distance of approximately five
times the uniform depth of flow in the downstream channel.(7)

Freeboard should equal the mean depth of flow, since wave height will reach approximately twice the
mean depth. This freeboard height should be used for both temporary and permanent channel
installations.

 

Gradation, Thickness, and Filter Requirements

Riprap gradation, thickness and  filter requirements are the same as those for mild slopes. It is important
to note that riprap thickness is measured normal to steep channel gradients. Also, the rock gradation used
in gabions mattress must be such that larger stones do not protrude outside the mattress and smaller
stones are retained by the wire mesh.

 

Design Procedures

A stepwise guideline with complete references to charts and figures is given for steep slope riprap and steep slope
gabion mattress designs.

 

Arch
ive

d



Steep Slope Riprap Design Procedure

Step 1. For given discharge and channel slope, enter Chart 15, Chart 16, Chart 17, and Chart 18 for correct
channel shape and determine the flow depth and mean riprap size. For channel widths not given in Chart 15, Chart
16, Chart 17, and Chart 18, interpolate between charts to find the correct value. For channel bottom widths in excess
of 1.83 meters, use the more detailed design procedures in Appendix C.

Step 2. To determine flow depth and riprap size for side slopes greater than 1V:3H use the following steps:

a. Find the flow depth using the formula:

                                                                                             

(14a)

where values of the A3 /Az ratio are found from Table 4 (the subscript refers to the side slopes z-value) and di is the
flow depth from the design charts.

b. Find the riprap size using the formula:

                                                                                            

(14b)

Where:

Di and D50 are values from the design charts.
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Steep Slope Gabion Mattress Design

Step 1. For given discharge and channel slope, enter Chart 19, Chart 20, Chart 21, and Chart 22 for correct
channel shape and determine flow depth. For intermediate channel widths or side slopes, follow the interpolation
procedures given in steep slope riprap design procedure. For channel bottom widths in excess of 1.8276 meters, see
Appendix C.

Step 2. Determine the permissible shear stress for the gabion mattress rock fill size from Chart 23.

Step 3. Determine the permissible shear stress for thickness of the gabion mattress from Chart 24.

Step 4. The design permissible shear stress, τp, will be the larger of the two shear stress values determined in
steps 2 and 3.

Step 5. Calculate the maximum shear stress acting on the channel, τd.

τd = γdS                                                                                                                         (5)

If τd > τp, the gabion mattress analyzed is not acceptable.

 

Example Problems

 

Example #9

Determine the mean riprap size and flow depth for a steep gradient channel.

Given: Q = 0.566 m3/s.
             S = 0.15 m/m
             B = 0.61 m
             z = 3

Find: Flow depth and mean riprap size.
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Solution: Entering into Chart 16, given Q = 0.566 m3/s and S = 0.15 m/m:

d =0.23 m
D50 = 0.27 m

 

Example #10

Determine the mean riprap size and flow depth for a steep gradient channel.

Given: Q = 0.849 m3/s
             S = 0.15 m/m
             B = 0.914
             Z = 3

Find: Flow depth and mean riprap size.

Solution:

 1. Enter into Chart 16, for B = 0.61 m given Q = 0.849 m3/s and S = 0.15 m/m

d = 0.280 m
D50 = 0.335 m

Enter into Chart 17, for B = 1.219 given Q = 0.849 m3/s and S = 0.15 m/m

d = 0.213 m
D50 = 0.274 m

 2. Interpolating for a 0.91 meters bottom width gives

d = 0.247 m
D50 = 0.30 m
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Example #11

Determine the mean riprap size and flow depth for a steep gradient channel.

Given: Q = 0.566 m3/s
             S = 0.20 m/m
             B = 0.61 m
              z = 4

Find: Flow depth and mean riprap size.

Solution:

 1.Enter into Chart 16, given Q = 0.566 m3/s and S = 0.20 m/m,

    d = 0.213 m

D50 = 0.36 m

 2. Enter into Table 4, given d/B = 0.35 and Z = 4:

A3 /A4 = 0.85

     Actual flow depth for 1V:4H side slopes,

d = 0.85 x 0.213 = 0.181 m

     Actual riprap size for 1V:4H side slopes,

D50 = (0.181/0.213) x 0.36 = 0.31 m

     Use of the worksheet for this problem is illustrated in Figure 24.

 

Example #12

Determine the flow depth and required thickness of a gabion mattress lining.

Given: Q = 0.283m3/s
             S = 0.12 m/m
             B = 0.61 m
             Z = 3
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             D50 = 0.15 m

Find: Flow depth and gabion mattress thickness.

Solution:

 1. From Chart 20 given Q = 0.283 m3/sec. and S =0.12 m/m

d = 0.167 m

 2. Calculate the maximum shear stress from equation 5,

τd = γdS = 1000 x 0.167 x 0.12 = 196.6 N/m2

 3. Permissible shear stress for Rock-fill size from Chart 23,

τp = 181.9 N/m2

     Permissible shear stress for a 0.23 meter mattress thickness from Chart 24,

τp = 215.5 N/m2

     Use τp = 215.5 N/m2 for design.

 4. The gabion mattress 0.23 meter thick is acceptable, since

τd = 196.6 < 215.5 = τp

     Use of the worksheet for this problem is illustrated in Figure 24.
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Figure 24. Worksheet for Example Problems 11 and 12Arch
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Figure 25. Worksheet for Steep Slope Channel Design

                 

Table 4. Values of A3/Az for Selection Side Slope and Depth to Bottom Width Ratios1

d/B

A 3 /A z

1V:2H 1V:3H 1V:4H 1V:5H 1V:6H
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0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.10
1.20
1.30
1.40
1.50
1.60
1.70
1.80
1.90
2.00

1.083
1.142
1.187
1.222
1.250
1.272
1.291
1.307
1.321
1.333
1.343
1.352
1.361
1.368
1.378
1.381
1.386
1.391
1.395
1.400

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

0.928
0.888
0.853
0.846
0.833
0.823
0.815
0.809
0.804
0.800
0.796
0.793
0.790
0.787
0.785
0.783
0.782
0.780
0.779
0.777

0.866
0.800
0.760
0.733
0.714
0.700
0.688
0.680
0.672
0.666
0.661
0.657
0.653
0.650
0.647
0.644
0.642
0.640
0.638
0.636

0.812
0.727
0.678
0.647
0.625
0.608
0.596
0.586
0.578
0.571
0.565
0.561
0.556
0.553
0.550
0.547
0.544
0.542
0.540
0.538

1based on the following equation:
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Chart 15. Steep Slope Riprap Design, Triangular Channel z=3
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Chart 16. Steep Slope Riprap Design, B=0.6 m, Z=3Arch
ive

d



Chart 17. Steep Slope Riprap Design, B=1.2 m, Z=3Arch
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Chart 18. Steep Slope Riprap Design, B=1.8 m, Z=3
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Chart 19. Steep Slope Gabion Mattress, Triangular Channel, Z=3Arch
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Chart 20. Steep Slope Gabion Mattress, B=0.6 m, Z=3Arch
ive

d



Chart 21. Steep Slope Gabion Mattress, B=1.2 m, Z=3Arch
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Chart 22. Steep Slope Gabion Mattress, B=1.8 m, Z=3
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Chart 23. Permissible Shear Stress for Gabion Mattress versus Rock Fill Size
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Chart 24. Permissible Shear Stress for Gabion Mattress versus Mattress Thickness
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Chapter 6 : HEC 15
Design Composite Lining

Go to Appendix A

Composite Lining Design

Composite linings protect the bed of a channel against the higher shear stress occurring in that portion of the
channel. The distribution of shear stress in a trapezoidal channel section (see Figure 18, Chapter 3) is such that the
maximum shear stress on the sides of the channel is significantly less than on the channel bottom. This allows for a
channel lining material to be used on the side slopes that has a lower permissible shear stress that the lining
material used for the bottom of the channel. The maximum shear on the side of the channel is given by the following
equation:

τs = K1 τ d                                       

where:

K1 is a function of channel geometry and is given in Chart 13.
τd is the shear stress at maximum depth.

  (15)

It is important that the bed lining material cover the entire channel bottom so that adequate protection is provided.
To guarantee that the channel bottom is completely protected, the bed lining should be extended a small distance
up the side slope.

Computation of flow conditions in a composite channel requires the use of an equivalent Manning's n value for the
entire perimeter of the channel. For determination of equivalent roughness, the channel area is divided into two
parts of which the wetted perimeters and Manning's n values of the low- flow section and channel sides are known.
These two areas of the channel are then assumed to have the same mean velocity. Chart 25 provides a means of
determining the equivalent roughness coefficient, KC, for various applications of two channel linings.

Another important use of composite linings are in vegetative lined channels that have frequent low flows. These low
flows will usually kill the submerged vegetation. In erodible soils, this leads to the formation of a small gully at the
bottom of the channel. Gullies weaken a vegetative lining during higher flows, causing additional erosion, and can
result in a safety hazard. A solution is to provide a non-vegetative low-flow channel lining such as concrete or
riprap. The dimensions of the low-flow channel are sufficient to carry frequent low flows but only a small portion of
the design flow. The remainder of the channel is covered with vegetation.

Special Considerations

When two lining materials with significantly different roughness values are adjacent to each other, erosion may
occur near the boundary of the two linings. Erosion of the weaker lining material may damage the lining as a whole.
In the case of composite channel linings with vegetation on the banks, this problem can occur in the early stages of
vegetative establishment. A temporary lining should be used adjacent to the low-flow channel to provide erosion
protection until the vegetative lining is well established.

Design Procedure
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Composite Lining Design Procedure

The procedure for composite linings designs consists of the following steps.

Step 1. Determine the permissible shear stress τp, for both lining types.(see Table 2)

Step 2. Estimate the depth of flow, di.

Step 3. Determine Manning's n for each lining type. (Table 3 for non-vegetative linings and Chart 5,
Chart 6, Chart 7, Chart 8, and Chart 9 for vegetative linings.)

Step 4. Compute the ratio of rougher to smoother Manning's n values, n2/n1.

Step 5. Determine the hydraulic radius, R. and the wetted perimeter, P. for the entire channel section
(Chart 4 or equations in Appendix A).

Step 6. Compute the ratio of low-flow channel wetted perimeter, , to total wetted perimeter,  (

/P).

Step 7. Determine a compound lining factor, KC, from Chart 25. Calculate the effective Manning's n
from,

n = KC n1

where:

n1 = Manning's n for smoother lining.

 Step 8. Determine channel flow depth, d, using the effective Manning's n.

 Step 9. Compare estimated flow depth, di, with calculated flow depth, d. If the difference is greater
than 0.03 m repeat steps 3 through 8.

 Step 10. Determine the shear stress at maximum depth, τd, and the shear stress on the channel
side slope, τs

τd = γdS

and

τs = K1 τd                                                                                                                 (15)

Where K1 is from Chart 13.

 Step 11. Compare the shear stresses, τd and τs, to the permissible shear stress, τp, for each of the
channel linings. If τd or τs is greater the τp for the respective lining, a different combination of linings
should be evaluated.

The design procedure is demonstrated in the following example. The worksheet at the end of this
chapter (Figure 28) is provided for carrying out the compound lining design procedure computations.
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Example Problem

Example #13:

Determine the channel design for a composite concrete and vegetation lining.

Given: Q = 0.28 m3/s.
S = 0.02 m/m
Trapezoidal channel shape
Z = 3
Concrete low-flow channel, 0.91 m wide

Figure 26. Compound Lining Example

Find:

 1. Effective Manning's n.

 2. Flow depth in channel.

 3. Suitability of channel lining materials.

Solution:

 1. Permissible shear stress for Class C vegetation, τp = 47.88 N/m2 and concrete is a non-erodible,
rigid lining.

 2. Initial depth is estimated at 0.30 m

 3. From Chart 4, given d/B = 0.33

R/d = 0.64
R = 0.19 m
A/Bd = 2.0
A = 2.0 x 0.91 x 0.30 = 0.55 m2

P = A/R = 0.55/0.19 = 2.8 m

The concrete lining provides the low-flow channel, as given in the sketch,

 = 0.91

/P = 0.91/2.62 = 0.34

 4. From Chart 7 for Class C vegetation, n2 = 0.083
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                         From Table 3 for concrete, n1= 0.013
                                                             n2 /n1= 0.083/0.013=6.4

 5. From Chart 25 given /P= 0.34 and n2 /n1 = 6.4

                                         KC = 5.0
                                             n= 5.0 x 0.013=0.065  

 6. From Chart 3 for S = 0.02, given Qn = 0.0184 and B = 0.91
                                       d/B = 0.28
                                       d = 0.25 m  

The difference between calculated depth and estimated depth is greater than 0.03 meters; therefore
repeat steps 3 through 6.

 3.The revised depth of flow is 0.25 m From Chart 4, given d/B = 0.28,

R/d = 0.66
R = 0.17 m
A/Bd = 1.84
A = 0.42 m2

P = 0.42/0.17=2.5
/P =0.91/2.47=0.36

 4.From Chart 7 for Class C vegetation, n2 = 0.095.

   n2/n1 =0.095/0.013=7.3

 5. From Chart 25, given /P= 0.36 and n2 /n1 = 7.3,
                                               KC = 5.5
                                               n = 5.5 X 0.013 =0.072  

 6. From Chart 3 for S = 0.020, given Qn = 0.02 and B = 0.91,
                                    d/B = 0.29
                                    d = 0.264  

     The calculated and previous values of depth are within 0.03 m. The results are,

n = 0.072
d =0.265

 7. The Shear Stress , at maximum depth from equation 5,

τd = γdS = 9810 x 0.264 x 0.02 = 52.0 N/m2

     The maximum shear stress on the sides of the channel is determined from equation 15.

τs = K1 τd

     where the shear stress ratio, K1, is determined from Chart 13 given Z = 3 and B/d = 3.45, as K1 =
0.87

τs =0.87 x 52.0 = 45.2 N/m2

 8.The maximum shear stress on the channel side slopesis less than permissible, so the lining is
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acceptable.

Figure 27. Worksheet for Compound Lining DesignArch
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Figure 28. Worksheet for Example Problem 13Arch
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Chart 25. Roughness Factor for Compound Channel Lining

Go to Appendix A Arch
ive

d



Appendix A : HEC 15
Equations for Various Channel Geometries

Go to Appendix B
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Figure 29. Equations for Various Channel Geometries

Go to Appendix B
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Appendix B : HEC 15
Development of Design Charts and Procedures

Go to Appendix C

 

Resistance Equations

Resistance to flow in open channels with flexible linings can be accurately described using the
universal-velocity-distribution law (7). The form of the resulting equation is:

V = V* [a + b log (R/kS)]                                                                                                                      (16)

where:

V = mean channel velocity
V* = shear velocity which is (gRS)0.5

a, b = empirical coefficients
R = hydraulic radius
kS = roughness element height
g = acceleration due to gravity.

Values of kS and the empirical coefficients, a and b for different lining material are given in Table 5. These values are
based on an analysis of data collected by McWhorter et al. and Thibodeaux (14,15) for the Department of
Transportation. The coefficients for riprap were developed by Blodgett and McConaughy (19) and the coefficients for
vegetation are from work by Kouwen et al (6).

Manning's equation (equation 1) and equation 16 can be combined to give Manning's roughness coefficient n in terms
of the relative roughness. The resulting equation is:

 

  (17)

The n value is divided by the roughness height to the one-sixth power in order to make both sides of the equation
dimensionless.

Figure 29 shows the behavior of Manning's n versus relative roughness. It can be seen that for values of relative
roughness less than 10, there is significant variation in the n value. Flow conditions in small to moderate sized
channels will typically fall in the range of relative roughness from 10 to 100. Over this range, the n value varies about
20 percent.

The relative roughness of vegetative channel linings depends on physical characteristics of the grass as well as the
shear stress exerted on the grass. With grasses, the relative roughness will vary depending on the bending of the
vegetation with the degree of bending being a function of the stiffness of the vegetation and the shear stress
conditions.(6) Roughness height for vegetation is given by:
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equation 18

where:

h = average height of vegetation
 = Avg. shear stress

MEI = stiffness factor.

   

 
(18)

Values of h and MEI for various classifications of vegetative roughness, known as retardance classifications, are given
in Table 6.

The relative roughness for grasses in classifications A through E is typically less than 10. In this range, the variation in
the Manning's roughness coefficient is substantial, and it is not acceptable to use only an average value. By combining
equations 17 and 18, the Manning's roughness coefficient can be described as a function of hydraulic radius and
tractive force. The resulting equation is:

equation 19

where:

C is 19.97 log (44.8 h0.6 MEI0.4) and depends on the class of vegetation.

   

  
(19)

Design charts for determining Manning's n for vegetative channel linings were developed by plotting values given by
equation 19.

   

Table 5. Empirical Coefficients for Resistance Equation
Lining Material Ks a b

(ft) (mm)
Woven Paper

Jute Mesh

Fiberglass Roving

Straw with Net

Curled Wood Mat

Synthetic Mat

Riprap

Vegetation

0.004

0.038

0.035

0.12

0.11

0.065

D50

equation 19

1.2

11.6

10.7

36.6

33.5

19.8

0.73

0.74

0.73

0.72

0.65

0.96

2.25

0.42

8.00

8.04

8.00

7.83

7.10

8.13

5.23

5.23

                

Table 6. Relative Roughness Parameters for Vegetation
Retardance Class Average Height, h Stiffness MEI

ft mm lb ft2 Newton m2

A
B
C
D
E

3.0
2.0
0.66
0.33
0.13

910
610
200
100
40

725
  50
    1.2
    0.12
    0.012

300
  20
    0.5
    0.05
    0.005
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Figure 30. Manning's n versus Relative Roughness for Selected Lining Types.

Go to Appendix C
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Appendix C : HEC 15
Development of Steep Gradient Design Charts and Procedures

Go to Appendix D

General

The design of riprap for steep gradient channels presents special problems. On steep gradients, the riprap size required to
stabilize the channel is often of the same order of magnitude as the depth of flow. The riprap elements often protrude from the
flow, creating a very complex flow condition.

Laboratory studies and field measurements (20) of steep gradient channels have shown that additional factors need to be
considered when computing hydraulic conditions and riprap stability. The development of design procedures for this manual
has, therefore, been based on equations that are more general in nature and account directly for several additional forces
affecting riprap stability. The Bathurst resistance equation is used to predict hydraulic conditions in steep gradient channels and
the factor of safety method is used to assess riprap stability. A brief discussion of both methods is given in this Appendix A and
the assumptions used in developing the design procedures are presented.

Bathurst Resistance

Most of the flow resistance in channels with large-scale roughness is derived from the form drag of the roughness elements and
the distortion of the flow as it passes around roughness elements. Consequently, a flow resistance equation for these conditions
has to account for skin friction and form drag. Because of the shallow depths of flow and the large size of the roughness
elements, the flow resistance will vary with relative roughness area, roughness geometry, Froude number (the ratio of inertial
forces to gravitational forces), and Reynolds number (the ratio of inertial forces to viscous forces).

Bathurst's experimental work quantified these relationships in a semi-empirical fashion. The work shows that for Reynolds
numbers in the range of 4 x 104 to 2 x 105, resistance is likely to fall significantly as Reynolds number increases. For Reynolds
numbers in excess of 2 x 105, the Reynolds effect on resistance remains constant. When roughness elements protrude through
the free surface, resistance increases significantly due to Froude number effects, i.e., standing waves, hydraulic jumps, and
free-surface drag. For the channel as a whole, free-surface drag decreases as the Froude number and relative submergence
increase. Once the elements are submerged, Froude number effects related to free-surface drag are small, but those related to
standing waves are important.

The general dimensionless form of the Bathurst equation is:
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where:

V = mean velocity divided by the shear velocity.
V*
V* = (gdS)0.5

d = mean flow depth, m
g = acceleration due to gravity
n = Manning's roughness coefficient
Fr = Froude number
REG = roughness element geometry
CG = channel geometry.

     
(20)

The functions of Froude number, roughness element geometry, and channel geometry are given by the following equations:

             

             

where:

T = channel top width
Y50 = mean value of the distribution of the average of the long and median axes
of a roughness element

  
  (21)

   

  
  
  (22)

  

  
  (23)Arch
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b = parameter describing the effective roughness concentration.

The parameter b describes the relationship between effective roughness concentration and relative submergence of the
roughness bed. This relationship is given by:

where:

S50 = mean of the short axis lengths of the distribution of roughness elements
a, c = constants varying with bed material properties.

The parameter, c, is a function of the roughness size distribution and varies
with respect to the bed-material gradation. σ, where:

                

c = 0.648 σ -0.134

  
   (24)

  

   

  

  

  

  

   
 (25)

For standard riprap gradations the log standard deviation is assumed to be constant at a value of 0.182 , giving a c value of
0.814.

The parameter, a, is a function of channel width and bed material size in the cross stream direction, and is defined as:

  (26)

In solving equation 20 for use with this manual, it is assumed that the axes of a riprap element are approximately equal for
standard riprap gradations. The mean diameter, D50, is therefore substituted for D50 and S50 parameters.

Riprap Stability

The stability of riprap is determined by analyzing the forces acting on individual riprap element and calculating the factor of
safety against its movements. The forces acting on a riprap element are its weight (Ws), the drag force acting in the direction of
flow (Fd), and the lift force acting to lift the particle off the bed (FL). Figure 30 illustrates an individual element and the forces
acting on it. The geometric terms required to completely describe the stability of a riprap element include:
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α = angle of the channel bed slope
β, δ = angles between the two vectors: weight and drag, and their resultant in the plane of the side slope,
respectively
θ = angle of the channel side slope
φ= angle of repose for the riprap.

As the element will tend to roll rather than slide, its stability is analyzed by calculating the moments causing the particle to roll
about the contact point, c, with an adjacent riprap element as shown in Figure 30 . The equation describing the equilibrium of
the particle is:

2 Ws cosθ = 1 Ws sinθ cosβ 3 Fd cosδ + 4 FL   (27)

The factor of safety against movement is the ratio of moments resisting motion over the moments causing motion. This yields:

             

                                                                                        (28)

Where:

SF = Safety Factor

Evaluation of the forces and moment arms for equation 28 involves several assumptions and a complete derivation is given in
Simons and Senturk.(21) The resulting set of equations are used to compute the factor of safety:

                                                                                                                    

 (29)

                                                                                                                   

(30)
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(31)

                                                                                                                                    (32)

where :

τs = side slope shear stress
F* = dimensionless critical shear stress
γs = specific weight of the rock
γ = specific weight of water
D50 = median diameter of the riprap
η = stability number
η' =side slope stability number.

The side slope shear stress can be computed as:

                                                                                                                   

 (33)

K1 can be obtained from Chart 13. The angle of repose φ may be obtained from Chart 12.

In the derivation given in Simons and Senturk (21), F* was equal to 0.047. Recent studies (22) have shown F* to take on much
larger values for large-diameter particles in flow conditions having a high Reynolds number. Based on this work and Reynolds
numbers encountered in steep gradient Channels, the design procedure sets F* equal to 0.15.Arch
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Solution Procedure

The solution procedure using the Bathurst resistance equation and factor-of-safety approach to riprap stability is outlined in the
flow chart given in Figure 31. A factor of safety of 1.5 is used. This value was used in developing the design charts of this
manual ( through 18).
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Figure 31. Hydraulic Forces Acting on a Riprap Element
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Figure 32. Steep Slope Design Procedure

Go to Appendix D
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Appendix D : HEC 15
Suggested Guideline Specifications

Go to Table of Contents

The Specifications in this Appendix A are presented for the information of the designer, and should be modified as
required for each individual design.

 

Riprap

 

Description

This work consists of furnishing Materials and performing all work necessary to place riprap on bottoms and
side slopes of channels, or as directed by the engineer.

The types of riprap included in this specification are:
Rock riprap. Riprap consists of stone dumped in place on a filter blanket or prepared slope to form a
well graded mass with a minimum of voids.

.  

Gravel channel lining. Gravel placed on filter blanket or prepared slope to form a well graded mass
with a minimum of voids.

b.  

 

Materials

Rock riprap. Stone used for riprap shall be hard, durable, angular in shape; resistant to weathering and
to water action; free from overburden, spoil, shale and organic material; and shall meet the gradation
requirements specified. Neither breadth nor thickness of a single stone should be less than one-third its
length. Rounded stone or boulders will not be accepted unless authorized by special provisions. Shale
and stone with shale seams are not acceptable. The minimum weight of the stone shall be 155 pounds

.  
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per cubic foot as computed by multiplying the specific gravity (bulk-saturated-surface-dry basis,
AASHTO Test 85) times 62.3 pounds per cubic foot.

The sources from which the stone will be obtained shall be selected well in advance of the time
when the stone will be required in the work. The acceptability of the stone will be determined by
service records and/or by suitable tests. If testing is required, suitable samples of stone shall be
taken in the presence of the engineer at least 25 days in advance of the time when the placing of
riprap is expected to begin. The approval of some rock fragments from a particular quarry site
shall not be construed as constituting the approval of all rock fragments taken from that quarry.

In the absence of service records, resistance to disintegration from the type of exposure to which
the stone will be subjected will be determined by any or all of the following tests as stated in the
special provisions:

When the riprap must withstand abrasive action from material transported by the
stream, the abrasion test in the Los Angeles machine shall also be used. When
the abrasion test in the Los Angeles machine ( AASHTO Test 96) is used, the
stone shall have a percentage loss of not more than 40 after 500 revolutions.

1.  

In locations subject to freezing or where the stone is exposed to salt water, the
sulfate soundness test (AASHTO Test 104 for ledge rock using sodium sulfate)
shall be used. Stones shall have a loss not exceeding 10 percent with the
sulfate test after 5 cycles.

2.  

When the freezing and thawing test (AASHTO Test 103 for ledge rock
procedure A) is used as a guide to resistance to weathering, the stone should
have a loss not exceeding 10 percent after 12 cycles of freezing and thawing.

3.  

Each load of riprap shall be reasonably well graded from the smallest to the maximum size
specified. Stones smaller than the specified 10 percent size and spells will not be permitted in an
amount exceeding 10 percent by weight of each load.

Control of gradation will be by visual inspection. The contractor shall provide two samples of rock
of at least 5 tons each, meeting the gradation specified. The sample at the construction site may
be a part of the finished riprap covering. The other sample shall be provided at the quarry. These
samples shall be used as a frequent reference for judging the gradation of the riprap supplied.
Any difference of opinion between the engineer and the contractor shall be resolved by dumping
and checking the gradation of two random truck loads of stone. Mechanical equipment, a sorting
site, and labor needed to assist in checking gradation shall be provided by the contractor at no
additional cost to the State.
Gravel channel lining. Gravel riprap shall consist of gravel or crushed rock of the thickness andb.  
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gradations shown on project drawings. All material comprising the riprap shall be composed of tough
durable particles reasonably free of thin, flat, or elongated particles and shall not contain organic matter.

 

Construction Requirements

General. Slopes to be protected by riprap shall be free of brush, trees, stumps, and other objectionable
Materials and be dressed to smooth surface. All soft or spongy material shall be removed to the depth
shown on the plans or as directed by the engineer and replaced with approved native material. Filled
areas will be compacted and a toe trench as shown on the plans shall be dug and maintained until the
riprap is placed.

.  

Protection for structured foundations shall be provided as early as the foundation construction
permits. The area to be protected shall be cleared of waste Materials and the surfaces to be
protected prepared as shown on the plans. The type of riprap specified will be placed in
accordance with these specifications as modified by the special provisions.

When shown on the plans, a filter blanket or filter fabric shall be placed on the prepared slope or
area to be provided with foundation protection as specified before the stone is placed.

The contractor shall maintain the riprap until all work on the contract has been completed and
accepted. Maintenance shall consist of the repair of areas where damaged by any cause.
Rock riprap. Stone for riprap shall be placed on the prepared slope or area in a manner which will
produce a reasonably well-graded mass of stone with the minimum practicable percentage of voids.
The entire mass of stone shall be placed so as to be in conformance with the lines, grades, and
thicknesses shown on the plans. Riprap shall be placed to its full course thickness at one operation and
in such a manner as to avoid displacing the underlying material. Placing of riprap in layers, or by
dumping into chutes, or by similar methods likely to cause segregation, will not be permitted.

b.  

The larger stones shall be well distributed and the entire mass of stone shall conform to the
gradation specified by the engineer. All material going into riprap protection shall be so placed
and distributed so that there will be no large accumulations of either the larger or smaller sizes of
stone.

It is the intent of these specifications to produce a fairly compact riprap protection in which all
sizes of material are placed in their proper proportions. Hand placing or rearranging of individual
stones by mechanical equipment may be required to the extent necessary to secure the results
specified.
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Unless otherwise authorized by the engineer, the riprap protection shall be placed in conjunction
with the construction of the embankment with only sufficient lag In construction of the riprap
protection as may be necessary to allow for proper construction of the portion of the embankment
protected and to prevent mixture of embankment and riprap. The contractor shall maintain the
riprap protection until accepted, and any material displaced by any cause shall be replaced to the
lines and grades shown on the plans at no additional cost to the State.

When riprap and filter material are dumped under water, thickness of the layers shall be increased
as shown on the plans; and methods shall be used that will minimize segregation.
Gravel channel Lining. Gravel for riprap shall be placed on the prepared slope or area.c.  

 

Measurement for Payment

The quantity of riprap to be paid for, of specified thickness and extent, in place and accepted, shall be
measured by the number of cubic yards as computed from surface measurements parallel to the riprap
surface and thickness measured normal to the riprap surface. riprap placed outside the specified limits will
not be measured or paid for, and the contractor may be required to remove and dispose of the excess riprap
without cost to the State.

Basis for Payment

Quantities shall be paid for at the contract unit price per cubic yard and shown in the bid schedule which price
shall be full compensation for furnishing all material, tools, and labor; the preparation of the subgrade; the
placing of the riprap; the grouting when required; and all other work incidental to finished construction in
accordance with these specifications.

 

Wire Enclosed Riprap
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Description

This work will consist of furnishing all materials and performing all work necessary to place wire enclosed
riprap on bottoms and side slopes of channels or as directed by the engineer. Wire enclosed riprap consists
of mats or baskets fabricated from wire mesh, filled with stone, connected together, and anchored to the
slope. Details of construction may differ depending upon the degree of exposure and the service, whether
used for revetment or used as a toe protection for other types of riprap.

Materials

Material requirements shall meet those given for riprap, except for size and gradation of stone. Stone used
shall be well graded and the smallest dimension of 70 percent of stone, by weight, shall exceed the wire
mesh opening. The maximum size of stone, measured normal to the slope, shall not exceed the mat or
basket thickness.

Wire mesh shall be galvanized woven fencing conforming to the specifications for fence fabric, and shall be of
the gage and dimensions shown on the plans. Ties and lacing wire shall be No. 9 gage galvanized unless
otherwise specified.

Construction Requirements

Construction requirements shall meet those given for rock riprap. Wire enclosed segments shall be hand-or
machine-formed to the dimensions shown on the plans. These units shall be placed, laced, and filled to
provide a uniform, dense, protective coat over the area specified.

Perimeter edges of wire enclosed units are to be securely selvedged or bound so that the joints formed by
tying the selvedges have approximately the same strength as the body of the mesh. Wire-enclosed units shall
be tied to its neighbors along all contacting edges at 1 foot intervals in order to form a continuous connecting
structure.

Mattresses and baskets on channel side slopes should be tied to the banks by anchor stakes driven 4 feet
into tight soil (clay) and 6 feet into loose soil (sand). The anchor stakes should be located at the inside
corners of mattress or basket diaphragms along an upslope (highest) wall, so that the stakes are an integral
part of the mattress or basket. The exact maximum spacing of the stakes depends upon the configuration of
the mattress or basket; however, the following is the minimum spacing: Stakes every 6 feet along and down
the slope for slopes 2.5H:1V and steeper, and every 9 feet along and down the slope for slopes flatter than
2.5H:1V.
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Channel linings should be tied to the channel banks with wire-enclosed riprap counterforts at least every 12
inches. Counterfronts should be keyed at least 12 inches into the existing banks with slope mattress or
basket linings and should be keyed at least 3 feet by turning the counterfront endwise when the lining is
designed to serve as a retaining wall.

Measurement for Payment

The quantity of wire-enclosed riprap of specified thickness and extent in place and accepted, shall be
measured by the number of square yards obtained by measurements parallel to the riprap surface. Riprap
placed outside the specified limits will not be measured or paid for, and the contractor may be required to
remove and dispose of the excess riprap without cost to the State.

Basis for Payment

Quantities shall be paid for at the contract unit price per square yards and shown in the bid schedule, which
price shall be full compensation for furnishing all material, tools, and labor; the preparation of the subgrade;
the placing of the stone; and all other work incidental to finished construction in accordance with these
specifications.

 

Woven Paper Net

 

Description

This work shall consist of furnishing materials and all work necessary to install woven paper net fabric for
erosion control on roadway, ditches, or slopes, or as directed by the engineer.Arch
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Materials

Materials shall consist of knitted plastic net, interwoven with paper strips. The yarn shall be of
photodegradable synthetic types and the paper shall be biodegradable. Staples shall be 6 inches and 12
inches in length, and composed of high carbon iron.

Construction Requirements

Woven paper net shall be placed on the prepared slope or seedbed area which has been prepared and
leveled according to various other sections in these specifications. If seeding and fertilizer are in the
provisions, they should be applied immediately before laying the fabric.

Woven paper net shall be applied on slopes with the fabric running vertical from the top of the slope. In
drainage's, woven paper net shall be applied in the direction of the water flow. The fabric shall be secured
and buried in a 4 inch trench, 1 foot back from the crown and at the bottom of the slope. Heavy gauge staples
shall secure the fabric at 9 inch intervals along the edges and overlaps and at 3 foot intervals down the center
of the fabric roll. Rolls shall overlap 4 inches. Woven paper net shall be draped rather than stretched across
the surface.

The contractor shall maintain the fabric blanket until all work on the contract has been completed and
accepted. Maintenance shall consist of the repair of areas where damaged by any cause. All damaged areas
shall be repaired to reestablish the condition and grade of the soil prior to application of the covering and shall
be refertilized, reseeded, and remulched as directed.

Measurement for Payment

The quantity of woven paper net, including staples, completely in place and accepted, shall be measured by
the square yard of finished surface. No allowance will be made for overlap. Woven paper net placed outside
the specified limits will not be measured or paid for and the contractor may be required to remove or dispose
of the excess without cost to the state.

Basis for Payment

Quantities shall be paid for at the contract unit price per square yard which price shall be full compensation
for furnishing all Materials, tools, and labor; the preparation of the subgrade; the placing of the woven paper
net; and all other work incidental to finished construction in accordance with these specifications.
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Jute Net

 

Description

This work consists of furnishing materials and performing all work necessary to install jute net on roadway
ditches or slopes or as directed by the engineer.

Materials

Jute net shall consist of heavy mesh of a uniform open plain weave of unbleached, smolder-resistant, single
jute yarn. The yarn shall be of a loosely twisted construction having an average twist of not less than 1.6 turns
per inch and shall not vary in thickness by more than one-half its normal diameter. The jute net shall be
furnished in approximately 90-pounds rolled strips and shall meet the following requirements:

Length: approximately 75 yards
Width: 48 inches  + 1 inch
            78 warp ends per width of cloth
            41 weft ends per yard
Weight: 1.22 lb per linear yard with + 5 percent

Staples shall be 3, 6, and 12 inches in length, and composed of high carbon iron or as specified by the
engineer.

Construction Requirements

The blankets shall be placed in designated locations immediately after seeding and mulching operations have
been completed. The material shall be applied smoothly but loosely to the soil surface without stretching. The
upslope end of each piece of jute net shall be buried in a narrow trench 6 inches deep. After the jute is buried,
the trench shall be firmly tamped closed.

In cases where one roll of jute mesh ends and a second roll starts, the upslope piece should be brought over
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the buried end of the second roll so that there is a 12 inch overlap to form a junction slot. Where two or more
widths of jute net are applied side by side, an overlap of at least 4 inches must be made.

Check slots should be made before the jute net is rolled out. A narrow trench should be dug across the slope
perpendicular to the direction of flow. A piece of jute, cut the same length as the trench, is folded lengthwise.
The fold is placed in the trench and the trench is tamped closed. The portion of the jute remaining above
ground is unfolded and laid flat on the soil surface. Check slots will be spaced so that one check slot or
junction slot occurs without each 50 feet of slope. Overlaps which run down the slope, outside edges and
centers shall be stapled on 2-foot intervals. Each width of jute net will have a row of staples down the center
as well as along each edge. Check slots and junction slots will be stapled across at 6 inch intervals.

For extra hard soil, use 0.075 sharp-pointed fence-type staples, composed of hardened steel.

The jute net must be spread evenly and smoothly and be in contact with the seeded area at all points. The
contractor shall maintain the jute mesh until all work on the contract has been completed and accepted.
Maintenance shall consist of the repair of areas where damaged by any cause. All damaged areas shall be
repaired to reestablish the condition and grade of the soil prior to application of the covering and shall be
refertilized, reseeded and remulched as directed.

Measurement for Payment

The quantity of jute net, including staples, completely in place and accepted, shall be measured by the
square yard of finished surface. No allowance will be made for overlap. Mat placed outside the specified limits
will not be measured or paid for, and the contractor may be required to remove and dispose of the excess
mat without cost to the State.

Basis for Payment

Quantities shall be paid for at the contract unit price per square yard which price shall be full compensation
for furnishing all Materials, tools, and labor; the preparation of the subgrade; the placing of the jute net; and
all other work incidental to finished construction in accordance with these specifications.
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Fiberglass Roving

 

Description

This work consists of furnishing Materials and performing all work necessary to install fiberglass roving on
roadway ditches or slopes, or as directed by the engineer.

Materials

a. General requirements. The material shall be formed from continuous fibers drawn from molten glass,
coated with a chrome-complex sizing compound, collected into strands and lightly bound together into roving
without the use of clay, starch, or like deleterious substances. The roving shall be wound into a cylindrical
package approximately 0.30 m high in such a manner that the roving can be continuously fed from the center
of the package through an ejector driven by compressed air and expanded into a mat of glass fibers on the
soil surface. The material shall contain no petroleum solvents or other agents known to be toxic to plant or
animal life.

Liquid asphaltic Materials shall conform to the requirements of AASHTO M81, M82, and M141 for the
designated types and grades.

b. Detailed requirements. The fiberglass roving shall conform to these detailed requirements:
Property Limits Test Method
Strands/Rove
Fibers/Strand
Fiber Diameter, inch
    (Trade Designation-G)
Yd/lb. of Sand
Yd/lb. of Rove
Organic content, percent maximum
Package Weight, lb.

56-64
184-234

0.00035-0.0004
13,000-14,000
210-230

0.75
30-35

End Count

ASTM D 578
ASTM D 578
ASTM D 578

ASTM D 578
ASTM D 578
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Construction Requirements

The fiberglass roving shall be applied over the designated area within 24 hours after the normal seeding
operations have been completed.

The fiberglass roving shall be spread uniformly over the designated area to form a random mat of continuous
glass fibers at the rate of 0.25 pounds per square  yard. This rate may be varied as directed by the engineer.

The fiberglass roving shall be anchored to the ground with the asphaltic Materials applied uniformly over the
glass fibers at the rate of 0.25 gallon per square yard. This rate may be varied as directed by the engineer.

The upgrade end of the lining shall be buried to a depth of 1 foot to prevent undermining. Instructions for
slope and ditch protection may be stipulated by the engineer to fit the field conditions encountered.

The contractor shall maintain the roving until all work on the contract has been completed and accepted.
Maintenance shall consist of the repair of areas where damaged by any cause. All damaged areas shall be
repaired to reestablish the condition and grade of the soil prior to application of the covering and shall be
refertilized, reseeded and remulched as directed.

Measurement for Payment

Fiberglass roving will be measured by the pound, and the quantity to be measured will be that actually used
on the project. Roving placed outside the specified limits will not be paid for and the contractor may be
required to remove and dispose of the excess roving without cost to the State.

Basis for Payment

Quantities shall be paid for at the contract unit price per pound and shown in the bid schedule, which price
shall be full compensation for furnishing all Materials, tools, and labor; the preparation of the subgrade, the
placing of the roving, and all other work incidental to finished construction in accordance with these
specifications.
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Curled Wood Mat

Description

This work consists of furnishing materials and performing all work necessary to install curled wood mat on
roadway ditches or slopes, or as directed by the engineer.

Materials

All materials shall meet the requirements of the following specifications. The blanket shall consist of a
machine produced mat of curled wood excelsior of 80 percent, 8 inches or longer fiber length with consistent
thickness and the fiber evenly distributed over the entire area of the blanket. The top side of the blanket shall
be covered with a biodegradable extruded plastic mesh. The blanket shall be made smolder resistant without
the use of chemical additives.
Width
Length
Weight per roll
Weight per m2

Volume per roll

48 inch + 1 inch
180 feet
78 lb + 8 lb
0.875 lb + 10%
80 yd3

Pins and staples shall be made of high carbon iron wire 0.162 or larger in diameter. "U" shaped staples shall
have legs 8 inches long and a 1-inch crown. "T" shaped pins shall have a minimum length of 8 inches after
bending. The bar of the "T" shall be at least 4 inches long with the single wire end bent downward
approximately 3/4-inch.

Construction Requirements

The area to be covered shall be properly prepared, fertilized, and seeded before the blanket is placed. When
the mat is unrolled, the netting shall be on top and the fibers shall be in contact with the soil. In ditches,
blankets shall be unrolled in the direction of the flow of water. The end of the upstream blanket shall overlap
the buried end of the downstream blanket a maximum of 8 inches and a minimum of 4 inches, forming a
junction slot. This junction slot shall be stapled across at 8-inch intervals. Adjoining blankets (side by side)
shall be offset 8 inches from center of ditch and overlapped a minimum of 4 inches. Use 6 staples across the
start of each roll, at 4-foot intervals, alternating the center row so that the staples form an "X" pattern. A
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common row of staples shall be used on adjoining blankets.

The contractor shall maintain the blanket until all work on the contract has been completed and accepted.
Maintenance shall consist of the repair of areas where damaged by any cause. All damaged areas shall be
repaired to reestablish the condition and grade of the soil prior to application of the covering and shall be
refertilized, reseeded, and remulched as directed.

Measurement for Payment

Curled wood mat, including staples, completely in place and accepted, will be measured by the square yard
of finished surface. No allowance will be made for overlap. Mat placed outside the specified limits will not be
measured or paid for, and the contractor may be required to remove and dispose of the excess without cost
to the State.

Basis for Payment

Quantities shall be paid for at the contract unit price per square yard and shown in the bid schedule, which
price shall be full compensation for furnishing all materials, tools, and labor; the preparation of the subgrade;
the placing of the matting; and all other work incidental to finished construction in accordance with these
specifications.

 

Straw with Net

 

Description

This work consists of furnishing materials and performing all work necessary to install straw with net on
roadway ditches or slopes, or as directed by the engineer.
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Materials

Straw. Straw shall be derived from wheat, oats, or barley. The contractor shall furnish evidence that
clearance has been obtained from the county agricultural commissioner, as required by law, before
straw obtained from outside the county in which it is to be used is delivered to the site of the work.
Straw that has been used for stable bedding shall not be used.

.  

Plastic net shall be an extruded polypropylene or other approved plastic material, extruded in such a
manner as to form a net of 3/4-inch minimum square openings. The net shall be furnished in rolls to
meet the following characteristics:

b.  

Width
Length
Weight

48 inch, minimum
50 yard, minimum, convenient lengths
2.6 lb/1000 f2, minimum

Pins and staples shall be made of high carbon iron wire 0.162 or larger in diameter. "U" shaped staples
shall have legs 8 inches long and a 1-inch crown. "T" shaped pins shall have a minimum length of 8
inches after bending. The bar of the "T" shall be at least 4 inches long with the single wire end bent
downward approximately 3/4 inch.

c.  

Construction Requirements

Plastic net shall be placed as soon as possible after mulching operations have been completed in locations
designated in the plans. Net shall be used only to secure straw mulch to the finished slope or ditch.

Preparation shall include all the work required to make ready the areas for incorporating straw. Areas on
which straw is to be applied shall be prepared such that the straw will be incorporated into the soil to the
degree specified. Removing and disposing of rocks and debris from embankments constructed as part of the
work will be considered as included in the contract price paid per ton for straw and no additional
compensation will be allowed therefore.

Straw shall be uniformly spread at the rate specified in the special provisions. When weather conditions are
suitable, straw may be pneumatically applied by means of equipment which will not render the straw
unsuitable for incorporation into the soil.

Straw shall be incorporated into the soil with a roller equipped with straight studs, made of approximately
7/8-inch steel plate, placed approximately 8 inches apart, and staggered. The studs shall not be less than 6
inches long or more than 6 inches wide, and shall be rounded to prevent withdrawing the straw from the soil.
The roller shall be of such weight as to incorporate the straw sufficiently into the soil so that the straw will on
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and will leave a uniform surface.

The net shall be applied smoothly but loosely on the mulched surface without stretching. The net shall be
unrolled from the top to the bottom of the slope. The top edge of the net shall be buried and stapled at of the
slope in a narrow trench 6 inches deep. After the edge is buried and stapled, the trench shall be backfilled
and tamped.

In cases where one roll of net ends and a second roll starts, the upslope piece shall be brought over the start
of the second roll so that there is a 4-inch overlap.

Where two or more widths of net are applied side by side, an overlap of at least 6 inches must be made.
Insert 1 staple every foot along top and bottom of edges of the net. Also, insert staples over 4 feet on each
edge and down center of net so that the staples alternate between edges and center to form an X shape
pattern

The contractor shall maintain the straw with net until all work on the contract has been completed and
accepted. Maintenance shall consist of the repair of areas where damaged by any cause. All damaged areas
shall be repaired to reestablish the condition and grade of the soil prior to application of the covering and shall
be refertilized, reseeded, and remulched as directed.

Measurement for Payment

Straw with net, including staples, completely in place and accepted, will be measured by the square yard of
finished surface. No allowance will be made for overlap. Straw and net placed outside the specified limits will
not be measured or paid for, and the contractor may be required to remove and dispose of the excess net
without cost to the State.

Basis for Payment

Quantities shall be paid for at the contract unit price per square yard and shown in the bid schedule which
price shall be full compensation for furnishing all materials, tools, and labor; the preparation of the subgrade;
and all other work incidental to finished construction in accordance with these specifications.
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Synthetic Mat

 

Description

This work consists of furnishing materials and performing all work necessary to install nylon mat on roadway
ditches or slopes, or as directed by the engineer.

Materials

Synthetic mat shall consist of three-dimensional structure of entangled nylon monofilaments, melt-bonded at
their intersections, forming a stable mat of suitable weight and configuration. The mat shall be crush-resistant,
pliable, resilient, water-permeable, and highly resistant to chemicals and environmental degradation. The mat
shall comply with the following physical properties:
Material type Nylon 6 plus a minimum content of

0.5 percent by weight of carbon black
Filament diameter 0.157 inch, minimum
Weight 0.747 + 0.075 lb/yd2

Thickness 0.70 in, minimum
Nominal width of roll 38 in
Nominal length of roll 109 yd
Color Black
Tensile properties1

  Strength
    Length direction 7.5 lb/in, minimum
    Width direction 4.4 lb/in, minimum
  Elongation
    Length direction 50 percent, minimum
    Width direction 50 percent, minimum
Resiliency2

   30 minute recovery 80 percent, minimum
   (3 cycles)

1ASTM D 1682 Strip test procedure modified to obtain filament bond strength to indicate tensile properties.
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2Compression load cycling of 100 16/in2 on 2 inch x 2 inch sample size, crosshead speed of 2 in/min.

Pins shall be 1-inch x 2-inch x 12 inch wedge-shaped wood stakes or 12-inch x 12-inch x 6-inch 0.162-inch
gauge or larger, one-piece or two-piece, ungalvanized steel "T" pins.

Construction Requirements

All surfaces to be protected shall be graded and finished so as to be stable and firm. Prepared surfaces that
become crusted shall be reworked to an acceptable condition before placing the mat.

Synthetic mat used as a ditch lining shall be applied with the length of roll laid parallel to the flow of water.
Start the installation with the initial strip placed in the center of the ditch to avoid an overlap in the center of
the ditch. Where more than one width is required, a longitudinal lap joint of not less than 3 inches shall be
used, with the upslope width on top. All lap joints and upslope edges shall be pinned or staked at intervals of
3 feet or less.

All wood stakes shall be driven to within 2 inches of the ground surface. All steel pins shall be driven flush to
the ground surface.

An anchor slot shall be placed at the upslope and downslope ends of the mat placement. At least 12 inches
of the end of the mat shall be buried vertically in a slot dug in the soil. The mat shall be secured in the anchor
slot by pins or stakes at intervals of 3 feet or less prior to burying. The soil shall be firmly tamped against the
mat in the slot.

Successive lengths of mat shall be overlapped at least 3 feet, with the upstream length on top. Pin or stake
the overlap by placing 3 pins or stakes evenly spaced across the end of each of the overlapping lengths and
by placing 3 pins or stakes across the width of the center of overlap area. Check slots shall be constructed by
placing a tight fold at least 8 inches vertically into the soil. Check slots shall be spaced so that a check slot
occurs within each 25 feet. Pin or stake the mat in the check slot at each edge overlap and in the center of
mat.

Upslope edges of mat used as ditch lining shall terminate on 6-inch wide horizontal shelves running parallel
to the axis of the ditch for the full length of the ditch. Edges of the mat shall be pinned or staked at 3-foot
intervals, backfilled with soil, and tamped to original slope.

After the mat has been placed, the area shall be evenly seeded as specified, allowing the seeds to drop to
the grade through the openings in the mat.

The contractor shall maintain the blanket until all work on the contract has been completed and accepted.
Maintenance shall consist of the repair of areas where damaged by any cause.
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Measurement for Payment

Synthetic mat, including pins or stakes, complete, in place, and accepted, will be measured by the square
yard of finished surface. Mat placed outside the specified limits will not be measured or paid for and the
contractor may be required to remove and dispose of the excess mat without cost to the State.

Basis for Payment

Quantities shall be paid for at the contract unit price per square yard and shown in the bid schedule, which
price shall be full compensation for furnishing all materials, tools, and labor; the preparation of the subgrade;
placing of the mats; and all other work incidental to finished construction in accordance with these
specifications.

 

Filter Blanket

 

Description

This work consists of furnishing materials and performing all work necessary to install filter blanket on
roadway ditches or slopes, or as directed by the engineer.

Materials

The filter blanket will consist of one or more layers of gravel, crushed rock, or sand, of the thickness shown
on the plans. The gradation of material in each layer of the filter blanket shall meet the requirements of the
special provisions. All material comprising the filter blanket shall be composed of tough, durable particles;
reasonably free from thin, flat, and elongated pieces; and shall be free from organic matter.
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Construction Requirements

A filter blanket shall be placed on the prepared slope or area to the full specified thickness of each layer in
one operation, using methods which will not cause segregation of particle sizes within the filter material. The
surface of the finished layer should be reasonably even and free from mounds or windows. Multiple layers of
filter material, when shown on the plans, shall be placed in the same manner, using methods which will not
cause mixture of the material in the different layers.

The filter blanket shall be placed in accordance with various sections of these specifications requiring the use
of a filter blanket or as specified by the engineer.

The contractor shall maintain the blanket until all work on the contract has been completed and accepted.
Maintenance shall consist of the repair of areas where damaged by any cause.

Measurement for Payment

The quantity of filter blanket to be paid for, of specified thickness and extent, in place and accepted, shall be
measured by the number of cubic yards as computed from surface measurement parallel to the riprap surface
and thickness measured normal to the riprap surface. Blanket placed outside the specified limits will not be
measured or paid for, and the contractor may be required to remove and dispose of the excess without cost
to the State.

Basis for Payment

Quantities shall be paid for at the contract unit price per cubic yard, which price shall be full compensation for
furnishing all materials, tools, and labor; the preparation of the subgrade; placing of the filter blanket ; and all
other work incidental to finished construction in accordance with these specifications.

 

Engineering Fabric
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Description

This work consists of furnishing materials and performing all work necessary to install engineering fabric on
roadway ditches or slopes, or as directed by the engineer.

Materials

The filter fabric shall be manufactured of polyester, nylon or polypropylene material, or a combination thereof.
The material shall not act as a wicking agent, shall be permeable, and shall conform to the following criteria:
  For Edge Drains For Underdrains
Weight, ounces/yd2, minimum ASTM Designation D 1910

Grab tensIle strength (1-inch grip), lb, minimum

Elongation, percent, minimum ASTM Designation, D 1682

Toughness, lb, minimum (percent elongation x grab tensile
strength)

40

50

10

3,000

   4.0

   90

   10

   4,000

 

Construction Requirements

Engineering fabric shall be placed to the specified thickness in accordance with various sections of these
specifications requiring the use of an engineering fabric or as specified by the engineer. The contractor shall
maintain the fabric until all work on the contract has been completed and accepted. Maintenance shall consist
of the repair of areas where damaged by any cause.

Measurement for Payment

Engineering fabric to be paid for, of specified thickness and extent, in place and accepted, will be measured
in square yards in accordance with the provisions in the various sections of these specifications, requiring the
use of engineering fabric.
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Basis for Payment

Quantities shall be paid for in accordance with the provisions in the various sections of these specifications
requiring the use of engineering fabric.

Go to Table of Contents
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Table 1. Classification of Vegetal Covers as to Degree of Retardance
Retardance Class Cover Condition

A Weeping Love Grass Excellent stand, tall (average
760 mm)

Yellow Bluestem Ischaemum Excellent stand, tall (average
910 mm)

B Kudzu Very dense growth, uncut
Bermuda Grass Good stand, tall (average 300

mm)
Native Grass Mixture (little bluestem, bluestem,
blue gamma, and other long and short midwest
grasses)

(Good stand, unmowed)

Weeping lovegrass Good stand, tall (average 610
mm)

Lespedeza sericea Good stand, not woody, tall
(average 480 mm)

Alfalfa Good stand, uncut (average
280 mm)

Weeping lovegrass Good stand, unmowed
(average 330 mm)

Kudzu Dense growth, uncut
Blue Gamma Good stand, uncut (average

280 mm)
C Crabgrass Fair stand, uncut 250 to 1200

mm
Bermuda grass Good stand, mowed (average

150 mm)
Common Lespedeza Good stand, uncut (average

280 mm)
Grass-Legume mixture--summer (orchard grass,
redtop, Italian ryegrass, and common lespedeza)

(Good stand, uncut (150 to 200
mm)

Centipedegrass Very dense cover (average
150 mm)

Kentucky Bluegrass Good stand, headed (150 to
300 mm)

D Bermuda grass Good stand, cut to 60-mm
height

Common Lespedeza Excellent stand, uncut
(average 110 mm)

Buffalo grass Good stand, uncut (80 to 150
mm)

Grass-legume mixture--fall, spring (orchard grass,
redtop, Italian, ryegrass, and common lespedeza)

(Good stand, uncut (100 to 130
mm)

Lespedeza sericea After cutting to 50-mm height.
Very good stand before cutting.

E Bermuda grass Good stand, cut to height
40-mm
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Bermuda grass Burned stubble
Note: Covers classified have been tested in experimental channels. Covers were green and generally
uniform.
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Table 2. Permissible Shear Stresses for Lining Material
Lining Category Lining Type Permissible Unit Shear Stress1

lb/ft2 N/m2

Temporary* Woven Paper Net
Jut Net
Fiberglass Roving:
      Single
      Double
Straw with net
Curled Wood Mat
Synthetic Mat

0.15
0.45

0.60
0.85
1.45
1.55
2.00

7.2
21.5

28.7
40.7
69.4
74.2
95.8

Vegetative Class A
Class B
Class C
Class D
Class E

3.70
2.10
1.00
0.60
0.35

177.2
100.6
47.9
28.7
16.8

Gravel Riprap2 25 mm
50 mm

0.33
0.67

15.8
31.6

Rock Riprap2 150 mm
300 mm

2.00
4.00

95.8
191.5

Bare Soil non-cohesive
Cohesive

See Chart 1
See Chart 2

1Based on Data in 5,8,13,14,15.
2Based on equation 8(Current practice is to use 5D50 
Some "temporary" linings become permanent when buried.
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Table 3. Manning's Roughness Coefficients
Lining Category Lining Type n-Values

Depth Ranges

(0-150 mm) (150-600 mm) (> 600 mm)
Rigid Concrete

Grouted Riprap
Stone Masonry
Soil Cement
Asphalt

0.015
0.040
0.042
0.025
0.018

0.013
0.030
0.032
0.022
0.016

0.013
0.028
0.030
0.020
0.016

Unlined Bare Soil
Rock Cut

0.023
0.045

0.020
0.035

0.020
0.025

Temporary* Woven Paper Net
Jute Net
Fiberglass Roving
Straw With Net
Curled Wood Mat
Synthetic Mat

0.016
0.028
0.028
0.065
0.066
0.036

0.015
0.022
0.021
0.033
0.035
0.025

0.015
0.019
0.019
0.025
0.028
0.021

Gravel Riprap 25 mm D50
50 mm D50

0.044
0.066

0.033
0.041

0.030
0.034

Rock Riprap 150 mm D50
300 mm D50

0.104
--

0.069
0.078

0.035
0.040

* Some temporary Linings become permanent when buried.
1Based on data in 5,8,13,14,and 15
Note: Values listed are representative values for the respective depth ranges. Manning's roughness
coefficients, n, vary with the flow depth. See Appendix B.
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Preface : HEC 15
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Foreword

This Implementation package provides guidance for the design of stable conveyance channels
using flexible linings. The information in the manual should be of interest to the State and
Federal Hydraulics engineers and others responsible for stabilizing roadside channels. The
manual has been adopted as HEC 15 in the Hydraulics Engineering Circular Series.

Copies of the manual are being distributed to FHWA regions and division offices and to each
state highway agency for their use. Additional copies of the report can be obtained from the
National Technical Information Service, 5280 Port Royal Road, Springfield, Virginia 22161.

Stanley R. Byington, Director
Office of Implementation.

Notice

This document is disseminated under the sponsorship of the Department of Transportation in
the interest of information exchange. The United States Government assumes no liability for
the contents or the use thereof.

The contents of this report reflect the views of the author, who is responsible for the facts and
the accuracy of the data presented herein. The contents do not necessarily reflect the policy of
the Department of Transportation.

This report does not constitute a standard, specification, or regulation. The United States
Government does not endorse products or manufacturers. Trade or manufacturer's names
appear herein only because they are considered essential to the objective of this document.
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METRIC (SI*) CONVERSION FACTORS
Approximate Conversions to SI Units

Symbol When You Know Multiply by To Find Symbol

       Length      

in
ft
yd
mi

inches
feet
yards
miles

2.54
0.3048
0.914
1.61

millimetres
metres
metres
kilometres

mm
m
m
km

      Area     

in2

ft2
yd2

mi2
ac

square inches
square feet
square yards
square miles
acres

645.2
0.0929
0.836
2.59
0.395

millimetres squared
metres squared
metres squared
kilometres squared
hectares

mm2

m2

m2

km2
ha

      Mass Weight     

oz
lb
T

ounces
pounds
short tons (2000 lb)

28.35
0.454
0.907

grams
kilograms
megagrams

g
kg
Mg

      Volume    

fl oz
gal
ft3
yd3

fluid ounces
gallons
cubic feet
cubic yards

29.57
3.785
0.0328
0.0765

millilitres
litres
metres cubed
metres cubed

mL
L
m3

m3

      Temerature (exact)    
oF Farhrenheit

temperature
5/9 (after
subtracting 32)

Celsius
temperture

oC

*SI is the Symbol for the International System of Measurments

Approximate Conversions to SI Units
Symbol When You Know Multiply by To Find Symbol

       Length      
mm
m
m
km

millimetres
metres
metres
kilometres

0.039
3.28
1.09
0.621

inches
feet
yards
miles

in
ft
yd
mi

      Area     
mm2

m2

km2
ha

millimetres squared
metres squared
kilometres squared
hectares
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10.764
0.39
2.53

square inches
square feet
square miles
acres

in2

ft2
mi2
ac

      Mass Weight     
g
kg
Mg

grams
kilograms
megagrams (1000 kg)

0.0353
2.205
1.103

ounces
pounds
short tones

oz
lb
T

      Volume    
mL
L
m3

m3

millilitres
litres
metres cubed
metres cubed

0.034
0.264
35.315
1.308

fluid ounces
gallons
cubic feet
cubic yards

fl oz
gal
ft3
yd3

      Temerature (exact)    
oC Celsius

temperture
9/5 (then
add 32)

Farhrenheit
temperature

oF

These factors conform to the requirement of FHWA Order 5190.1A
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Chapter 1 : HEC 15
Introduction

Go to Chapter 2

This manual addresses the design of stable conveyance channels using flexible linings.
Because the roadside channel is included within the highway right-of-way, the gradient of the
channel typically parallels the grade of the highway. Hydraulic conditions in the conveyance
channel can become severe even at fairly mild highway grades. As a result, these channels
often require stabilization against erosion. The channel stabilization measures included in this
manual are deemed flexible linings.

The primary difference between rigid and flexible channel linings from an erosion-control
standpoint is their response to changing channel shape. Flexible linings are able to conform to
change in channel shape while rigid linings can not. The result is that flexible linings can
sustain some change in channel shape while maintaining the overall integrity of the channel
lining. Rigid linings tend to fail when a portion of the lining is damaged. Damage to a lining is
often from secondary forces such as frost heave or slumping. Rigid linings can be disrupted by
these forces whereas flexible linings, if properly designed, will retain erosion-control
capabilities.

Flexible linings also have several other advantages compared to rigid linings. They are
generally less expensive, permit infiltration and exfiltration and have a natural appearance.
Hydraulically, flow conditions in channels with flexible linings generally conform to those found
in natural channels, and thus provide better habitat opportunities for local flora and fauna. In
some cases, flexible linings may provide only temporary protection against erosion while
allowing vegetation to be established. The vegetation will then provide permanent erosion
control in the channel. The presence of vegetation in a channel can also provide a buffering
effect for run off contaminants.

Flexible linings have the disadvantage of being limited in the magnitude of erosive force they
can sustain without damage to either the channel or the lining. Because of this limitation, the
channel geometry (both in cross section and profile) required for channel stability may not fit
within the acquired right-of-way. A rigid channel can provide a much higher capacity and in
some cases may be the only alternative.

Design procedures covered in this manual relate to flexible channel linings. Rigid linings are
discussed only briefly so that the reader remains familiar with the full range of channel lining
alternatives. The primary reference for the design of rigid channels is Hydraulic Design Series
No. 3, "Design of Roadside Drainage Channels"(1). For channels which require other protection
measures, the design of energy dissipaters and grade-control structures can be found in
Hydraulic Engineering Circular (HEC) No. 14.(2)

Riprap design procedures covered in this manual are for channels having a design discharge of
1.416 m3/s (50cfs = 1.416 m3/s) or less. The use of the procedures in Hydraulic Engineering
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Circular (HEC) No. 11 is recommended for the design of riprap revetments or linings on
channels and streams with design flows in excess of 1.416 m3/s(3).

The permissible tractive force and Manning n values provided in this manual for grass lined
channels cannot be compared to values found in earlier manuals. The current values are based
on research conducted at Colorado State University which takes into account the stiffness of
the vegetation.

The riprap procedure for steep channels is based on an analysis of forces acting on the riprap.
While this procedure is theoretically sound, the results should be used with caution and be
taken as guidance. Whenever possible, the procedure should be checked against the
performance of installed channels in the field. The steep slope design procedure is limited to
channels having a design discharge of 1.416 m3/s of less.

Go to Chapter 2
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Symbols

A, B, C, D, F, G, H, K, L, M, N, P, Q, R, S, T, V, W, Y, Z, Misc.

To jump to a specific part of the alphabet, click on the above HotLinks!
Click the Back button to return to the top of this page.
(If the letter you are looking for does not appear in the HotLink list below, then there are
no glossary entries for that letter!)

A

A= Cross-sectional area of flow prism. ft.2, M2.

AOS= Measure of the largest effective opening in a geotextile; represents
opening size for which 95 percent of fabric pores are smaller than diameter.

B

B = Bottom width of trapezoidal channel, ft., m.

c

CG= Channel Geometry.

D

D50, D85 = Particle size of gradation, of which 50 percent, 85 percent, etc..,
of the mixture is finer by weight, ft., m.

d = Depth of flow in channel, ft., m.

d = Change in depth due to super elevation of flow in a bend, ft., m.

dn = Depth of normal or uniform flow, ft., m.

F

Fd = Drag force in direction of flow.

Fl = lift force.

Fr = Froude number, ratio of inertial forces to gravatational force in a system.

G

g = gravitational acceleration, ft./sec.2,  m/s2.

H

h = Average height of vegetation, ft., cm.
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K

Kb = ratio of maximum shear stress in bend to maximum shear stress upstream
from bend.

KC = compound channel lining factor.

K1 = ratio of channel side shear to bottom shear stress.

K2 = tractive force ratio.

Ks = roughness height, ft., cm.

KS = Tractive force ratio at bottom of channel.

L

Lp = protected length downstream from bend, ft., m.

M

MEI = Stiffness factor, lb. x ft.2, Newton x m2.

N

n = Manning's flow roughness coefficient.

P

p = Wetted perimeter of flow prism, ft., m.

P  = Wetted perimeter of low-flow channel, ft., m.

P.C. = Point on curve.

P.T. = Point on Tangent.

Q

Q = Discharge, flow rate, ft.3/sec., m3/s.

R

R = Hydraulic radius, A/P, ft. m.

RC = Mean radius of channel center line, ft., m.

REG = Roughness Element Gradient.

S

S = Average channel gradient.
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Sf = Energy gradient.

SF = Safety factor

S50 = Mean of the short axis lengths of the distribution of roughness element.

SSF = Side Slope Factor.

T

T = Channel top width, ft., m.

V

V = Mean Channel Velocity, ft./sec., m/s.

V* = Shear Velocity, ft./sec., m/s.

W

WS = Weight of riprap element, lb. kg

Y

Y50 = Mean value of the distribution of the average of the long and median
axes of a roughness element.

Z

Z = Side slope; cotangent of angle measured from horizontal.
Z= cot φ

Misc.

= Moment arms of riprap channel.

α= Angles between weight vector and the resultant in the plane of the side slope.

β= Angle of repose of coarse, noncohesive material, degrees.

γ = Unit Weight of water, lb./ft.3, kg/m3

δ= Angle between the drag vector and resultant in the plane of the side slope.

θ = Angle of repose of coarse, noncohesive material, degrees.

η =Stability number

η' = Stability number for side slopes.

σ = Bed material gradation.

τ = Average shear stress, lb./ft.2, Kg/m2.
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τb = Shear stress in a bend, lb./ft.2, Kg/m2.

τd = Shear stress in channel at maximum depth, lb./ft.2, kg/m2.

τp = Permissible shear stress, lb./ft.2, kg/m2.

τs = Shear stress on sides of channel, lb./ft.2, kg/m2.

φ= Angle of side slope (bank) measured from horizontal.
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